This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200238 #12 Feb 12 2025 13:08:52 %S A200238 9,3,0,0,5,7,1,1,0,0,9,2,4,8,9,2,4,6,7,8,8,2,4,6,8,1,4,4,0,5,6,4,2,9, %T A200238 8,7,6,1,2,8,2,5,6,1,0,1,9,3,3,3,0,7,7,4,3,6,2,1,4,0,0,8,2,0,5,2,4,8, %U A200238 3,3,0,7,8,7,5,2,4,1,7,9,3,2,7,7,1,6,9,0,3,3,2,7,7,5,3,4,1,1,2 %N A200238 Decimal expansion of greatest x satisfying 3*x^2 - 3*cos(x) = sin(x). %C A200238 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200238 G. C. Greubel, <a href="/A200238/b200238.txt">Table of n, a(n) for n = 0..10000</a> %H A200238 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200238 least x: -0.725773931375098148951813264652313... %e A200238 greatest x: 0.9300571100924892467882468144056... %t A200238 a = 3; b = -3; c = 1; %t A200238 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200238 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A200238 r = x /. FindRoot[f[x] == g[x], {x, -.73, -.72}, WorkingPrecision -> 110] %t A200238 RealDigits[r] (* A200237 *) %t A200238 r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110] %t A200238 RealDigits[r] (* A200238 *) %o A200238 (PARI) a=3; b=-3; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 05 2018 %Y A200238 Cf. A199949. %K A200238 nonn,cons %O A200238 0,1 %A A200238 _Clark Kimberling_, Nov 15 2011