This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200242 #19 Feb 12 2025 13:05:36 %S A200242 1,2,5,5,9,6,7,0,2,4,9,4,3,7,2,9,6,2,8,8,5,4,2,8,3,2,1,5,3,9,7,6,4,4, %T A200242 4,0,2,9,8,0,6,0,3,7,6,1,1,7,9,2,9,5,7,7,3,0,3,4,6,6,1,3,9,2,6,3,8,4, %U A200242 5,3,4,5,3,8,0,0,6,5,3,6,1,7,3,8,6,7,1,5,5,0,1,4,0,1,0,6,1,5,2 %N A200242 Decimal expansion of greatest x satisfying 3*x^2 - 3*cos(x) = 4*sin(x). %C A200242 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200242 G. C. Greubel, <a href="/A200242/b200242.txt">Table of n, a(n) for n = 1..10000</a> %H A200242 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200242 least x: -0.495594232798110803966694081360666... %e A200242 greatest x: 1.2559670249437296288542832153976444... %t A200242 a = 3; b = -3; c = 4; %t A200242 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200242 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A200242 r = x /. FindRoot[f[x] == g[x], {x, -.50, -.49}, WorkingPrecision -> 110] %t A200242 RealDigits[r] (* A200241 *) %t A200242 r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110] %t A200242 RealDigits[r] (* A200242 *) %o A200242 (PARI) a=3; b=-3; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 22 2018 %Y A200242 Cf. A199949. %K A200242 nonn,cons %O A200242 1,2 %A A200242 _Clark Kimberling_, Nov 15 2011