A200249 Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its previous elements modulo 6.
6, 21, 75, 267, 951, 3387, 12063, 42963, 153015, 544971, 1940943, 6912771, 24620199, 87686139, 312298815, 1112268723, 3961403799, 14108748843, 50249054127, 178964660067, 637392088455, 2270105585499, 8085100933407, 28795513971219
Offset: 1
Keywords
Examples
Some solutions for n=6: ..2....2....3....2....0....0....3....3....2....3....3....3....1....0....1....3 ..5....4....5....5....1....3....3....4....5....4....4....4....1....0....1....3 ..2....3....5....1....5....5....2....5....4....5....2....3....2....5....2....0 ..5....3....1....2....2....4....4....5....5....1....5....5....4....5....5....2 ..5....2....5....5....3....4....5....5....4....3....5....4....2....5....4....4 ..3....4....5....4....5....5....5....5....5....4....2....4....4....3....5....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..136
Crossrefs
Cf. A200251.
Formula
Empirical: a(n) = 3*a(n-1) +2*a(n-2).
Conjectures from Colin Barker, May 20 2018: (Start)
G.f.: 3*x*(2 + x) / (1 - 3*x - 2*x^2).
a(n) = (3*2^(-2-n)*((3-sqrt(17))^n*(-5+sqrt(17)) + (3+sqrt(17))^n*(5+sqrt(17)))) / sqrt(17).
(End)
Comments