cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200253 Number of 0..n arrays x(0..3) of 4 elements with each no smaller than the sum of its previous elements modulo (n+1).

Original entry on oeis.org

8, 24, 69, 135, 267, 448, 750, 1125, 1690, 2376, 3339, 4459, 5957, 7680, 9900, 12393, 15516, 19000, 23265, 27951, 33583, 39744, 47034, 54925, 64142, 74088, 85575, 97875, 111945, 126976, 144024, 162129, 182512, 204120, 228285, 253783, 282131, 312000
Offset: 1

Views

Author

R. H. Hardin, Nov 15 2011

Keywords

Comments

Row 4 of A200251.

Examples

			Some solutions for n=6:
..4....4....0....1....2....0....1....4....0....1....3....2....1....3....2....2
..4....6....2....1....6....1....6....5....0....3....5....2....1....6....6....6
..6....5....5....6....1....2....0....6....2....5....1....5....6....3....2....4
..1....6....3....6....2....4....3....3....5....5....3....4....5....6....3....6
		

Crossrefs

Cf. A200251.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 3*a(n-4) - 4*a(n-5) + 4*a(n-7) - 3*a(n-8) + 2*a(n-9) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(8 + 8*x + 21*x^2 + 13*x^3 + 21*x^4 + 12*x^5 + 13*x^6 - 2*x^7 + 3*x^8 - 2*x^10 + x^11) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2). - Colin Barker, Feb 23 2018