A200273 Number of 0..n arrays x(0..5) of 6 elements with zero 3rd differences.
2, 3, 6, 9, 14, 25, 36, 47, 64, 87, 110, 143, 176, 209, 258, 311, 364, 431, 498, 575, 666, 761, 856, 969, 1092, 1219, 1364, 1513, 1662, 1847, 2032, 2221, 2432, 2647, 2876, 3135, 3394, 3657, 3946, 4257, 4568, 4913, 5258, 5607, 6004, 6409, 6814, 7257, 7700, 8169
Offset: 1
Keywords
Examples
Some solutions for n=6: ..2....3....0....6....3....5....0....4....1....5....0....5....5....3....0....4 ..2....5....0....5....1....4....2....4....1....3....3....6....5....3....4....2 ..2....6....0....4....0....3....3....4....1....2....5....6....5....3....6....1 ..2....6....0....3....0....2....3....4....1....2....6....5....5....3....6....1 ..2....5....0....2....1....1....2....4....1....3....6....3....5....3....4....2 ..2....3....0....1....3....0....0....4....1....5....5....0....5....3....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200272.
Formula
Empirical: a(n) = a(n-3) +a(n-5) +a(n-6) -a(n-8) -a(n-9) +a(n-10) -a(n-11) -a(n-13) +a(n-14) -a(n-15) -a(n-16) +a(n-18) +a(n-19) +a(n-21) -a(n-24).
Empirical g.f.: x*(2 + 3*x + 6*x^2 + 7*x^3 + 11*x^4 + 17*x^5 + 22*x^6 + 24*x^7 + 26*x^8 + 33*x^9 + 31*x^10 + 32*x^11 + 26*x^12 + 26*x^13 + 21*x^14 + 15*x^15 + 10*x^16 + 8*x^17 + 6*x^18 + 3*x^19 + 3*x^20 + x^21 - x^23) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)^2). - Colin Barker, May 20 2018
Comments