This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200282 #12 Feb 12 2025 14:33:02 %S A200282 1,1,9,2,4,0,4,5,5,0,0,7,6,8,1,5,6,5,9,2,9,0,0,9,5,4,9,6,6,1,3,6,9,0, %T A200282 6,9,9,6,9,8,5,2,7,5,5,6,4,2,1,0,0,3,5,5,4,4,8,2,3,5,9,1,8,3,1,4,6,8, %U A200282 9,9,9,4,8,6,2,2,0,2,9,2,8,7,6,5,4,6,6,0,4,1,8,0,2,4,6,8,3,0,1 %N A200282 Decimal expansion of greatest x satisfying 3*x^2 - 4*cos(x) = 3*sin(x). %C A200282 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200282 G. C. Greubel, <a href="/A200282/b200282.txt">Table of n, a(n) for n = 1..10000</a> %H A200282 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200282 least x: -0.6615723781879899920628993073289... %e A200282 greatest x: 1.19240455007681565929009549661... %t A200282 a = 3; b = -4; c = 3; %t A200282 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200282 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A200282 r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110] %t A200282 RealDigits[r] (* A200281 *) %t A200282 r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A200282 RealDigits[r] (* A200282 *) %o A200282 (PARI) a=3; b=-4; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 07 2018 %Y A200282 Cf. A199949. %K A200282 nonn,cons %O A200282 1,3 %A A200282 _Clark Kimberling_, Nov 15 2011