This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200283 #12 Feb 12 2025 14:32:57 %S A200283 5,9,5,9,2,9,4,5,4,1,2,0,2,2,3,4,2,6,3,2,2,3,4,8,0,6,7,3,5,2,6,2,1,4, %T A200283 9,7,8,7,4,8,9,4,9,4,8,5,0,7,5,1,6,1,3,7,3,9,7,9,0,9,8,6,9,1,2,5,8,6, %U A200283 4,4,0,4,6,2,0,4,3,4,1,3,0,8,5,5,7,1,8,2,4,9,2,8,2,6,2,1,8,7,0 %N A200283 Decimal expansion of least x satisfying 3*x^2 - 4*cos(x) = 4*sin(x), negated. %C A200283 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200283 G. C. Greubel, <a href="/A200283/b200283.txt">Table of n, a(n) for n = 0..10000</a> %H A200283 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200283 least x: -0.5959294541202234263223480673526214... %e A200283 greatest x: 1.28612802674590996527915112614637... %t A200283 a = 3; b = -4; c = 4; %t A200283 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200283 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] %t A200283 r = x /. FindRoot[f[x] == g[x], {x, -.6, -.59}, WorkingPrecision -> 110] %t A200283 RealDigits[r] (* A200283 *) %t A200283 r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] %t A200283 RealDigits[r] (* A200284 *) %o A200283 (PARI) a=3; b=-4; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 07 2018 %Y A200283 Cf. A199949. %K A200283 nonn,cons %O A200283 0,1 %A A200283 _Clark Kimberling_, Nov 15 2011