This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200288 #12 Feb 12 2025 14:34:01 %S A200288 7,1,9,3,8,4,2,6,0,4,5,9,8,7,5,8,3,2,1,0,7,5,5,2,4,1,1,5,9,1,3,8,0,6, %T A200288 1,7,5,5,7,6,3,3,7,2,7,5,5,4,2,4,6,3,4,1,9,6,7,5,8,9,1,7,2,4,8,5,5,8, %U A200288 5,3,7,4,4,4,3,4,0,5,7,4,5,9,8,7,5,5,2,9,0,4,2,5,1,9,8,0,5,8,3 %N A200288 Decimal expansion of greatest x satisfying 4*x^2 - cos(x) = 2*sin(x). %C A200288 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200288 G. C. Greubel, <a href="/A200288/b200288.txt">Table of n, a(n) for n = 0..10000</a> %H A200288 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200288 least x: -0.300931885421902370031006240717514956... %e A200288 greatest x: 0.7193842604598758321075524115913806... %t A200288 a = 4; b = -1; c = 2; %t A200288 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200288 Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] %t A200288 r = x /. FindRoot[f[x] == g[x], {x, -.31, -.30}, WorkingPrecision -> 110] %t A200288 RealDigits[r] (* A200287 *) %t A200288 r = x /. FindRoot[f[x] == g[x], {x, .71, .72}, WorkingPrecision -> 110] %t A200288 RealDigits[r] (* A200288 *) %o A200288 (PARI) a=4; b=-1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 07 2018 %Y A200288 Cf. A199949. %K A200288 nonn,cons %O A200288 0,1 %A A200288 _Clark Kimberling_, Nov 15 2011