This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200300 #12 Feb 12 2025 14:36:09 %S A200300 8,3,0,8,5,0,3,2,7,6,6,0,5,4,7,4,0,2,7,6,6,6,2,0,9,9,3,5,6,6,5,9,7,2, %T A200300 8,9,7,8,5,3,0,3,0,1,5,7,3,0,2,8,1,4,8,0,7,4,7,1,6,5,1,2,1,8,3,5,0,0, %U A200300 1,8,5,4,8,1,3,3,8,1,5,2,2,3,2,5,4,0,6,8,6,3,2,0,8,3,6,2,8,0,6 %N A200300 Decimal expansion of greatest x satisfying 4*x^2 - 3*cos(x) = sin(x). %C A200300 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200300 G. C. Greubel, <a href="/A200300/b200300.txt">Table of n, a(n) for n = 0..10000</a> %H A200300 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200300 least x: -0.661826141188850993743026123357094... %e A200300 greatest x: 0.8308503276605474027666209935665... %t A200300 a = 4; b = -3; c = 1; %t A200300 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200300 Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] %t A200300 r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110] %t A200300 RealDigits[r] (* A200299 *) %t A200300 r = x /. FindRoot[f[x] == g[x], {x, .83, .84}, WorkingPrecision -> 110] %t A200300 RealDigits[r] (* A200300 *) %o A200300 (PARI) a=4; b=-3; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 08 2018 %Y A200300 Cf. A199949. %K A200300 nonn,cons %O A200300 0,1 %A A200300 _Clark Kimberling_, Nov 15 2011