This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200302 #12 Feb 12 2025 14:36:14 %S A200302 1,0,1,6,1,4,3,9,5,6,7,2,3,5,5,8,7,3,3,7,9,9,4,5,5,9,0,1,2,9,6,8,6,4, %T A200302 7,4,6,8,7,7,9,9,4,9,2,5,9,9,2,1,9,8,1,9,8,1,9,0,3,6,6,3,3,4,1,4,8,1, %U A200302 0,7,6,3,7,0,8,3,4,4,0,9,5,0,4,4,0,1,3,4,3,9,8,5,6,2,0,2,9,6,9 %N A200302 Decimal expansion of greatest x satisfying 4*x^2 - 3*cos(x) = 3*sin(x). %C A200302 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200302 G. C. Greubel, <a href="/A200302/b200302.txt">Table of n, a(n) for n = 1..10000</a> %H A200302 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200302 least x: -0.52377415675325572171784049673944... %e A200302 greatest x: 1.016143956723558733799455901296... %t A200302 a = 4; b = -3; c = 3; %t A200302 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200302 Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] %t A200302 r = x /. FindRoot[f[x] == g[x], {x, -.54, -.51}, WorkingPrecision -> 110] %t A200302 RealDigits[r] (* A200297 *) %t A200302 r = x /. FindRoot[f[x] == g[x], {x, 1, 1.05}, WorkingPrecision -> 110] %t A200302 RealDigits[r] (* A200298 *) %o A200302 (PARI) a=4; b=-3; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 08 2018 %Y A200302 Cf. A199949. %K A200302 nonn,cons %O A200302 1,4 %A A200302 _Clark Kimberling_, Nov 15 2011