This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200314 #25 Sep 08 2022 08:46:00 %S A200314 1,1,315,975975,12909521625,495181420358625,44035787449951171875, %T A200314 7845481113748784765634375,2526730187976408357560632640625, %U A200314 1362965093449949100037985665872890625,1160978904909328561005478318639484556796875 %N A200314 E.g.f. satisfies: A(x) = exp(x^4*A(x)^4/4!). %H A200314 G. C. Greubel, <a href="/A200314/b200314.txt">Table of n, a(n) for n = 0..100</a> %F A200314 a(n) = (4*n+1)^(n-1) * (4*n)!/(n!*(4!)^n). %F A200314 E.g.f.: (1/x)*Series_Reversion( x*exp(-x^4/4!) ). %F A200314 Powers of e.g.f.: define a(n,m) by A(x)^m = Sum_{n>=0} a(n,m)*x^(4*n)/(4*n)! %F A200314 then a(n,m) = m*(4*n+m)^(n-1) * (4*n)!/(n!*(4!)^n). %e A200314 E.g.f.: A(x) = 1 + x^4/4! + 315*x^8/8! + 975975*x^12/12! + ... %e A200314 where log(A(x)) = x^4*A(x)^4/4! and %e A200314 A(x)^4 = 1 + 4*x^4/4! + 1680*x^8/8! + 5913600*x^12/12! + 84084000000*x^16/16! + ... %t A200314 Table[(4*n + 1)^(n - 1)*(4*n)!/(n!*(4!)^n), {n, 0, 30}] (* _G. C. Greubel_, Jul 27 2018 *) %o A200314 (PARI) {a(n)=(4*n)!*polcoeff(1/x*serreverse(x*(exp(-x^4/4!+x*O(x^(4*n))))),4*n)} %o A200314 (PARI) {a(n)=(4*n+1)^(n-1)*(4*n)!/(n!*(4!)^n)}; %o A200314 (Magma) [(4*n+1)^(n-1)*Factorial(4*n)/(24^n*Factorial(n)): n in [0..30]]; // _G. C. Greubel_, Jul 27 2018 %o A200314 (GAP) List([0..10],n->(4*n+1)^(n-1)*Factorial(4*n)/(Factorial(n)*Factorial(4)^n)); # _Muniru A Asiru_, Jul 28 2018 %Y A200314 Cf. A034941, A200313, A200315. %K A200314 nonn %O A200314 0,3 %A A200314 _Paul D. Hanna_, Nov 15 2011