This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200321 #15 Nov 14 2014 10:42:19 %S A200321 17,43,59,103,139,151,157,173,193,281,457,461,463,499,607,1409,1451, %T A200321 2143,2657,4229,16063,19583,19699,62143,124981,166303,172663,240257, %U A200321 244301,276041,289853,305411,327319,376639,417941,505663,518761,524119,600703,1056287 %N A200321 Irregular triangle T(n,k) where row n contains the maximal nodes in the graph of XOR connected primes of interval [2^n+1,2^(n+1)-1], n>=4. %C A200321 Nodes with degree > 2 that have the greatest number of vertices in prime XOR connected graphs are defined as maximal nodes. The graph is constructed in the manner outlined in A200143. %e A200321 The XOR connected graph for the interval [33,63], n=5, is %e A200321 37 41 43 47 53 59 61 %e A200321 37 0 0 1 0 0 1 0 %e A200321 41 0 0 1 1 0 0 0 37 %e A200321 43 1 1 0 0 1 0 0 / \ %e A200321 47 0 1 0 0 0 0 0 or 47~41~43 59~61 %e A200321 53 0 0 1 0 0 1 0 \ / %e A200321 59 1 0 0 0 1 0 1 53 %e A200321 61 0 0 0 0 0 1 0 %e A200321 The maximum number of vertices connected to any prime is 3, therefore 43 and 59 are members of row n=5. %e A200321 Triangle begins: %e A200321 17; %e A200321 43, 59; %e A200321 103; %e A200321 139, 151, 157, 173, 193; %e A200321 281, 457, 461, 463, 499; %e A200321 607; %e A200321 1409, 1451; %p A200321 q:= (l, p, r)-> `if`(r-l=2, 0, `if`(isprime(l+r-p), 1, 0)+ %p A200321 `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r))): %p A200321 T:= proc(n) local r, l, u, p, m, d; %p A200321 r:= NULL; %p A200321 l:= 2^n; u:= 2*l; %p A200321 p:= nextprime(l); %p A200321 m:= -1; %p A200321 while p<=u do %p A200321 d:= q(l, p, u); %p A200321 if d=m then r:= r,p %p A200321 elif d>m then m:= d; r:= p fi; %p A200321 p:= nextprime(p) %p A200321 od; %p A200321 `if`(m>=3, r, NULL) %p A200321 end: %p A200321 seq(T(n), n=4..18); # _Alois P. Heinz_, Nov 16 2011 %Y A200321 Cf. A200143. %K A200321 nonn,tabf %O A200321 4,1 %A A200321 _Brad Clardy_, Nov 15 2011 %E A200321 More terms from _Alois P. Heinz_, Nov 16 2011