cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200323 For each composite m = A002808(n), a(n) is the smallest number k for which the equation x^m + (x+k)^m = (x+k+1)^m (mod m) has no solution, where x = 0..m-1.

This page as a plain text file.
%I A200323 #5 Mar 30 2012 18:36:00
%S A200323 2,3,2,3,3,2,2,1,2,3,2,7,2,2,1,2,3,2,3,2,1,2,1,2,3,1,2,3,2,3,4,2,2,3,
%T A200323 2,2,3,1,2,1,3,2,2,3,2,4,3,2,1,3,2,2,1,2,2,2,2,3,2,2,3,3,2,2,3,3,2,3,
%U A200323 4,1,2,2,1,2,3,2,7,3,2,3,2,2,3,1,2,1,2
%N A200323 For each composite m = A002808(n), a(n) is the smallest number k for which the equation x^m + (x+k)^m = (x+k+1)^m (mod m) has no solution, where x = 0..m-1.
%e A200323 a(12) = 7 because A002808(12) = 21 and the equation x^21 + (x+7)^21 = (x+8)^21 (mod 21)has no solution.
%p A200323 for n from 1 to 120 do: i:=0:for k from 1 to 500 while(i=0) do :ii:=0:for x from 0 to n-1 do:if x^n+(x+k)^n -(x+k+1)^n mod n =0 then ii:=ii+1:else fi:od: if ii=0 then i:=1:printf(`%d, `,k):else fi:od:od:
%Y A200323 Cf. A002808,  A200046.
%K A200323 nonn
%O A200323 1,1
%A A200323 _Michel Lagneau_, Nov 16 2011