This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200338 #23 Jan 28 2025 12:48:13 %S A200338 1,1,7,2,0,9,3,6,1,7,2,8,5,6,6,9,0,3,9,6,8,7,8,1,8,7,9,5,8,1,0,8,9,8, %T A200338 8,0,4,0,2,4,2,4,5,7,0,8,8,0,2,7,6,3,7,1,7,6,0,1,8,6,6,3,6,7,1,2,1,8, %U A200338 6,6,3,4,6,0,7,6,4,1,2,2,8,3,6,5,4,5,6,1,1,2,2,8,6,7,2,3,0,3,2 %N A200338 Decimal expansion of least x > 0 satisfying x^2 + 1 = tan(x). %C A200338 For many choices of a,b,c, there is exactly one x satisfying a*x^2 + b*x + c = tan(x) and 0 < x < Pi/2. %C A200338 Guide to related sequences, with graphs included in Mathematica programs: %C A200338 a.... b.... c.... x %C A200338 1.... 0.... 1.... A200338 %C A200338 1.... 0.... 2.... A200339 %C A200338 1.... 0.... 3.... A200340 %C A200338 1.... 0.... 4.... A200341 %C A200338 1.... 1.... 1.... A200342 %C A200338 1.... 1.... 2.... A200343 %C A200338 1.... 1.... 3.... A200344 %C A200338 1.... 1.... 4.... A200345 %C A200338 1.... 2.... 1.... A200346 %C A200338 1.... 2.... 2.... A200347 %C A200338 1.... 2.... 3.... A200348 %C A200338 1.... 2.... 4.... A200349 %C A200338 1.... 3.... 1.... A200350 %C A200338 1.... 3.... 2.... A200351 %C A200338 1.... 3.... 3.... A200352 %C A200338 1.... 3.... 4.... A200353 %C A200338 1.... 4.... 1.... A200354 %C A200338 1.... 4.... 2.... A200355 %C A200338 1.... 4.... 3.... A200356 %C A200338 1.... 4.... 4.... A200357 %C A200338 2.... 0.... 1.... A200358 %C A200338 2.... 0.... 3.... A200359 %C A200338 2.... 1.... 1.... A200360 %C A200338 2.... 1.... 2.... A200361 %C A200338 2.... 1.... 3.... A200362 %C A200338 2.... 1.... 4.... A200363 %C A200338 2.... 2.... 1.... A200364 %C A200338 2.... 2.... 3.... A200365 %C A200338 2.... 3.... 1.... A200366 %C A200338 2.... 3.... 2.... A200367 %C A200338 2.... 3.... 3.... A200368 %C A200338 2.... 3.... 4.... A200369 %C A200338 2.... 4.... 1.... A200382 %C A200338 2.... 4.... 3.... A200383 %C A200338 3.... 0.... 1.... A200384 %C A200338 3.... 0.... 2.... A200385 %C A200338 3.... 0.... 4.... A200386 %C A200338 3.... 1.... 1.... A200387 %C A200338 3.... 1.... 2.... A200388 %C A200338 3.... 1.... 3.... A200389 %C A200338 3.... 1.... 4.... A200390 %C A200338 3.... 2.... 1.... A200391 %C A200338 3.... 2.... 2.... A200392 %C A200338 3.... 2.... 3.... A200393 %C A200338 3.... 2.... 4.... A200394 %C A200338 3.... 3.... 1.... A200395 %C A200338 3.... 3.... 2.... A200396 %C A200338 3.... 3.... 4.... A200397 %C A200338 3.... 4.... 1.... A200398 %C A200338 3.... 4.... 2.... A200399 %C A200338 3.... 4.... 3.... A200400 %C A200338 3.... 4.... 4.... A200401 %C A200338 4.... 0.... 1.... A200410 %C A200338 4.... 0.... 3.... A200411 %C A200338 4.... 1.... 1.... A200412 %C A200338 4.... 1.... 2.... A200413 %C A200338 4.... 1.... 3.... A200414 %C A200338 4.... 1.... 4.... A200415 %C A200338 4.... 2.... 1.... A200416 %C A200338 4.... 2.... 3.... A200417 %C A200338 4.... 3.... 1.... A200418 %C A200338 4.... 3.... 2.... A200419 %C A200338 4.... 3.... 3.... A200420 %C A200338 4.... 3.... 4.... A200421 %C A200338 4.... 4.... 1.... A200422 %C A200338 4.... 4.... 3.... A200423 %C A200338 1... -1.... 1.... A200477 %C A200338 1... -1.... 2.... A200478 %C A200338 1... -1.... 3.... A200479 %C A200338 1... -1.... 4.... A200480 %C A200338 1... -2.... 1.... A200481 %C A200338 1... -2.... 2.... A200482 %C A200338 1... -2.... 3.... A200483 %C A200338 1... -2.... 4.... A200484 %C A200338 1... -3.... 1.... A200485 %C A200338 1... -3.... 2.... A200486 %C A200338 1... -3.... 3.... A200487 %C A200338 1... -3.... 4.... A200488 %C A200338 1... -4.... 1.... A200489 %C A200338 1... -4.... 2.... A200490 %C A200338 1... -4.... 3.... A200491 %C A200338 1... -4.... 4.... A200492 %C A200338 2... -1.... 1.... A200493 %C A200338 2... -1.... 2.... A200494 %C A200338 2... -1.... 3.... A200495 %C A200338 2... -1.... 4.... A200496 %C A200338 2... -2.... 1.... A200497 %C A200338 2... -2.... 3.... A200498 %C A200338 2... -3.... 1.... A200499 %C A200338 2... -3.... 2.... A200500 %C A200338 2... -3.... 3.... A200501 %C A200338 2... -3.... 4.... A200502 %C A200338 2... -4.... 1.... A200584 %C A200338 2... -4.... 3.... A200585 %C A200338 2... -1.... 2.... A200586 %C A200338 2... -1.... 3.... A200587 %C A200338 2... -1.... 4.... A200588 %C A200338 3... -2.... 1.... A200589 %C A200338 3... -2.... 2.... A200590 %C A200338 3... -2.... 3.... A200591 %C A200338 3... -2.... 4.... A200592 %C A200338 3... -3.... 1.... A200593 %C A200338 3... -3.... 2.... A200594 %C A200338 3... -3.... 4.... A200595 %C A200338 3... -4.... 1.... A200596 %C A200338 3... -4.... 2.... A200597 %C A200338 3... -4.... 3.... A200598 %C A200338 3... -4.... 4.... A200599 %C A200338 4... -1.... 1.... A200600 %C A200338 4... -1.... 2.... A200601 %C A200338 4... -1.... 3.... A200602 %C A200338 4... -1.... 4.... A200603 %C A200338 4... -2.... 1.... A200604 %C A200338 4... -2.... 3.... A200605 %C A200338 4... -3.... 1.... A200606 %C A200338 4... -3.... 2.... A200607 %C A200338 4... -3.... 3.... A200608 %C A200338 4... -3.... 4.... A200609 %C A200338 4... -4.... 1.... A200610 %C A200338 4... -4.... 3.... A200611 %C A200338 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A200338 For an example related to A200338, take f(x,u,v) = x^2 + u*x + v - tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A200338 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200338 x=1.17209361728566903968781879581089880... %t A200338 (* Program 1: A200338 *) %t A200338 a = 1; b = 0; c = 1; %t A200338 f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x] %t A200338 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] %t A200338 r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A200338 RealDigits[r] (* A200338 *) %t A200338 (* Program 2: implicit surface of x^2+u*x+v=tan(x) *) %t A200338 f[{x_, u_, v_}] := x^2 + u*x + v - Tan[x]; %t A200338 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.57}]}, {u, 0, 5, .1}, {v, 0, 5, .1}]; %t A200338 ListPlot3D[Flatten[t, 1]] (* for A200388 *) %o A200338 (PARI) solve(x=1,1.2,x^2+1-tan(x)) \\ _Charles R Greathouse IV_, Mar 23 2022 %Y A200338 Cf. A197737, A198414, A198755, A198866, A199170, A199370, A199429, A199597, A199949. %K A200338 nonn,cons %O A200338 1,3 %A A200338 _Clark Kimberling_, Nov 16 2011