This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200339 #9 Feb 07 2025 16:44:06 %S A200339 1,3,0,7,4,7,7,6,0,0,3,0,1,3,4,9,9,2,1,2,1,6,9,3,5,0,7,1,6,9,0,0,4,8, %T A200339 0,8,8,7,0,5,5,2,7,4,6,2,2,3,6,3,7,9,4,4,8,8,6,9,2,8,5,5,9,3,2,3,2,2, %U A200339 7,2,2,7,0,7,6,8,2,1,1,0,9,6,4,0,4,7,0,9,5,0,9,9,9,9,3,0,3,6,3 %N A200339 Decimal expansion of least x>0 satisfying x^2+2=tan(x). %C A200339 See A200338 for a guide to related sequences. The Mathematica program includes a graph. %e A200339 x=1.30747760030134992121693507169004808... %t A200339 a = 1; b = 0; c = 2; %t A200339 f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x] %t A200339 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] %t A200339 r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] %t A200339 RealDigits[r] (* A200339 *) %o A200339 (PARI) solve(x=1,1.5,x^2+2-tan(x)) \\ _Charles R Greathouse IV_, Mar 23 2022 %Y A200339 Cf. A200338. %K A200339 nonn,cons %O A200339 1,2 %A A200339 _Clark Kimberling_, Nov 16 2011