A200340 Decimal expansion of least x>0 satisfying x^2+3=tan(x).
1, 3, 6, 8, 3, 7, 1, 2, 7, 5, 0, 4, 7, 8, 9, 7, 7, 3, 4, 0, 8, 0, 7, 9, 0, 8, 8, 6, 6, 4, 0, 4, 2, 0, 6, 5, 2, 3, 7, 3, 9, 0, 9, 1, 5, 1, 6, 4, 9, 6, 3, 9, 1, 8, 6, 9, 0, 7, 9, 4, 4, 7, 3, 8, 5, 6, 4, 2, 5, 2, 7, 0, 2, 0, 8, 1, 5, 6, 9, 4, 2, 9, 9, 6, 3, 1, 4, 1, 7, 3, 1, 3, 1, 3, 1, 1, 5, 6, 2
Offset: 1
Examples
x=1.36837127504789773408079088664042065...
Crossrefs
Cf. A200338.
Programs
-
Mathematica
a = 1; b = 0; c = 3; f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] RealDigits[r] (* A200340 *)
-
PARI
solve(x=1,1.4,x^2+3-tan(x)) \\ Charles R Greathouse IV, Mar 23 2022
Comments