cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200371 Number of 0..n arrays x(0..8) of 9 elements with zero 3rd differences.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 11, 14, 21, 28, 35, 42, 49, 60, 75, 90, 105, 120, 139, 162, 185, 208, 233, 262, 295, 328, 365, 402, 447, 492, 541, 590, 639, 692, 757, 822, 887, 952, 1027, 1102, 1185, 1268, 1355, 1450, 1549, 1648, 1751, 1858, 1973, 2092, 2219, 2346, 2473, 2608
Offset: 1

Views

Author

R. H. Hardin Nov 16 2011

Keywords

Comments

Row 4 of A200370

Examples

			Some solutions for n=10
..1....5....8....3....4....6....9...10....0....8...10....2....6....0....0....9
..1....5....7....3....4....6....9....9....4....8...10....2....3....0....1....8
..1....5....6....3....4....6....9....8....7....8...10....2....1....0....2....7
..1....5....5....3....4....6....9....7....9....8...10....2....0....0....3....6
..1....5....4....3....4....6....9....6...10....8...10....2....0....0....4....5
..1....5....3....3....4....6....9....5...10....8...10....2....1....0....5....4
..1....5....2....3....4....6....9....4....9....8...10....2....3....0....6....3
..1....5....1....3....4....6....9....3....7....8...10....2....6....0....7....2
..1....5....0....3....4....6....9....2....4....8...10....2...10....0....8....1
		

Formula

Empirical: a(n) = -a(n-2) -a(n-4) -a(n-6) -a(n-8) +a(n-15) +a(n-16) +a(n-17) +a(n-18) +a(n-19) +a(n-20) +2*a(n-21) +a(n-22) +2*a(n-23) +a(n-24) +a(n-25) +a(n-27) +a(n-28) +a(n-29) +a(n-30) -a(n-31) +a(n-32) -a(n-33) +a(n-34) -a(n-35) -2*a(n-37) -a(n-38) -2*a(n-39) -a(n-40) -a(n-41) -a(n-42) -2*a(n-43) -2*a(n-44) -2*a(n-45) -a(n-46) -a(n-47) -a(n-48) -2*a(n-49) -a(n-50) -2*a(n-51) -a(n-53) +a(n-54) -a(n-55) +a(n-56) -a(n-57) +a(n-58) +a(n-59) +a(n-60) +a(n-61) +a(n-63) +a(n-64) +2*a(n-65) +a(n-66) +2*a(n-67) +a(n-68) +a(n-69) +a(n-70) +a(n-71) +a(n-72) +a(n-73) -a(n-80) -a(n-82) -a(n-84) -a(n-86) -a(n-88)