A200456 Number of -n..n arrays x(0..3) of 4 elements with zero sum and nonzero first and second differences.
4, 44, 142, 342, 678, 1148, 1832, 2744, 3874, 5334, 7114, 9192, 11708, 14644, 17962, 21826, 26206, 31044, 36544, 42660, 49310, 56734, 64866, 73616, 83256, 93696, 104834, 116970, 130006, 143824, 158748, 174668, 191446, 209446, 228542, 248572
Offset: 1
Keywords
Examples
Some solutions for n=3: .-2...-3....1...-2....0...-2....2...-1...-2....1....3....1....0...-1...-2....2 ..3...-1....0...-3....2...-1...-2....3....0...-3....2...-2....3....0....3...-1 .-3....3....1....2....1....1....1....0....3...-1...-3....3...-3...-1....1....1 ..2....1...-2....3...-3....2...-1...-2...-1....3...-2...-2....0....2...-2...-2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200454.
Formula
Empirical: a(n) = a(n-1) +2*a(n-3) -2*a(n-4) +a(n-5) -2*a(n-6) +a(n-7) -2*a(n-8) +2*a(n-9) +a(n-11) -a(n-12).
Empirical g.f.: 2*(1 + x)*(2 + 18*x + 31*x^2 + 65*x^3 + 63*x^4 + 72*x^5 + 52*x^6 + 39*x^7 + 9*x^8 + 9*x^9) / ((1 - x)^4*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 21 2018
Comments