cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200456 Number of -n..n arrays x(0..3) of 4 elements with zero sum and nonzero first and second differences.

Original entry on oeis.org

4, 44, 142, 342, 678, 1148, 1832, 2744, 3874, 5334, 7114, 9192, 11708, 14644, 17962, 21826, 26206, 31044, 36544, 42660, 49310, 56734, 64866, 73616, 83256, 93696, 104834, 116970, 130006, 143824, 158748, 174668, 191446, 209446, 228542, 248572
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2011

Keywords

Comments

Row 2 of A200454.

Examples

			Some solutions for n=3:
.-2...-3....1...-2....0...-2....2...-1...-2....1....3....1....0...-1...-2....2
..3...-1....0...-3....2...-1...-2....3....0...-3....2...-2....3....0....3...-1
.-3....3....1....2....1....1....1....0....3...-1...-3....3...-3...-1....1....1
..2....1...-2....3...-3....2...-1...-2...-1....3...-2...-2....0....2...-2...-2
		

Crossrefs

Cf. A200454.

Formula

Empirical: a(n) = a(n-1) +2*a(n-3) -2*a(n-4) +a(n-5) -2*a(n-6) +a(n-7) -2*a(n-8) +2*a(n-9) +a(n-11) -a(n-12).
Empirical g.f.: 2*(1 + x)*(2 + 18*x + 31*x^2 + 65*x^3 + 63*x^4 + 72*x^5 + 52*x^6 + 39*x^7 + 9*x^8 + 9*x^9) / ((1 - x)^4*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 21 2018