A200462 Number of 0..1 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 2.
2, 3, 5, 8, 13, 20, 29, 43, 63, 91, 130, 184, 262, 370, 519, 724, 1010, 1408, 1955, 2705, 3735, 5157, 7107, 9775, 13418, 18406, 25227, 34529, 47200, 64455, 87969, 119952, 163415, 222427, 302568, 411334, 558808, 758640, 1029312, 1395882, 1891970
Offset: 1
Keywords
Examples
Some solutions for n=6: 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 1 of A200469.
Programs
-
Maple
Configs:= [seq(convert(16+i,base,2)[1..4],i=0..15)]: Compatible:= proc(i,j) if not Configs[i][2..4]=Configs[j][1..3] then return 0 fi; if convert(Configs[i],`+`) mod 2 <= Configs[j][4] then 1 else 0 fi end proc: T:= Matrix(16,16,Compatible): initconfigs:= select(t -> t[1] <= t[2] and t[1]+t[2] mod 2 <= t[3] and t[1]+t[2]+t[3] mod 2 <= t[4], Configs): u0:= Vector(16, i -> `if`(member(Configs[i],initconfigs),1,0)): 2,3,5,8,seq(u0^%T . T^i . e, i=1..40); # Robert Israel, Dec 11 2023
Formula
a(n) - a(n + 1) + a(n + 3) + a(n + 4) - 5*a(n + 5) + 2*a(n + 6) + 2*a(n + 7) - 2*a(n + 8) - 2*a(n + 9) + 5*a(n + 10) - a(n + 11) - 2*a(n + 12) + 2*a(n + 13) - 2*a(n + 15) + a(n + 16) = 0. - Robert Israel, Dec 11 2023