A200462
Number of 0..1 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 2.
Original entry on oeis.org
2, 3, 5, 8, 13, 20, 29, 43, 63, 91, 130, 184, 262, 370, 519, 724, 1010, 1408, 1955, 2705, 3735, 5157, 7107, 9775, 13418, 18406, 25227, 34529, 47200, 64455, 87969, 119952, 163415, 222427, 302568, 411334, 558808, 758640, 1029312, 1395882, 1891970
Offset: 1
Some solutions for n=6:
0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1
0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1
1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0
1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0
0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1
0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0
-
Configs:= [seq(convert(16+i,base,2)[1..4],i=0..15)]:
Compatible:= proc(i,j)
if not Configs[i][2..4]=Configs[j][1..3] then return 0 fi;
if convert(Configs[i],`+`) mod 2 <= Configs[j][4]
then 1 else 0
fi
end proc:
T:= Matrix(16,16,Compatible):
initconfigs:= select(t -> t[1] <= t[2] and t[1]+t[2] mod 2 <= t[3] and t[1]+t[2]+t[3] mod 2 <= t[4], Configs):
u0:= Vector(16, i -> `if`(member(Configs[i],initconfigs),1,0)):
2,3,5,8,seq(u0^%T . T^i . e, i=1..40); # Robert Israel, Dec 11 2023
A200463
Number of 0..2 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 3.
Original entry on oeis.org
3, 6, 12, 24, 48, 98, 199, 400, 800, 1597, 3188, 6360, 12679, 25273, 50376, 100400, 200077, 398698, 794502, 1583212, 3154828, 6286514, 12526942, 24961994, 49740765, 99116372, 197505241, 393560803, 784232662, 1562708632, 3113946596, 6205036280
Offset: 1
Some solutions for n=6
..1....0....1....1....0....1....0....0....0....0....2....1....0....1....0....0
..2....0....2....2....0....2....0....0....1....2....2....2....0....2....2....0
..0....0....0....2....0....1....1....1....2....2....2....1....0....1....2....0
..0....0....0....2....2....2....1....2....1....2....0....1....0....2....2....1
..0....0....2....2....2....1....2....0....2....0....2....2....1....1....1....2
..2....0....2....2....1....0....2....2....1....2....0....2....2....2....1....2
-
Configs:= [seq(convert(81+i,base,3)[1..4],i=0..80)]:
Compatible:= proc(i,j)
if not Configs[i][2..4]=Configs[j][1..3] then return 0 fi;
if convert(Configs[i],`+`) mod 3 <= Configs[j][4]
then 1 else 0
fi
end proc:
T:= Matrix(81,81,Compatible):
initconfigs:= select(t -> t[1] <= t[2] and t[1]+t[2] mod 3 <= t[3] and t[1]+t[2]+t[3] mod 3 <= t[4], Configs):
u0:= Vector(81, i -> `if`(member(Configs[i],initconfigs),1,0)):
e:= Vector(81,1):
3, 6, 12, seq(u0^%T . T^i . e, i=0..30); # Robert Israel, Dec 11 2023
A200464
Number of 0..3 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 4.
Original entry on oeis.org
4, 10, 26, 69, 181, 455, 1120, 2794, 6955, 17254, 42770, 105825, 262026, 648672, 1605786, 3974375, 9835789, 24343416, 60250311, 149117782, 369056036, 913396093, 2260628044, 5594995167, 13847440350, 34272006253, 84822308047, 209933077581
Offset: 1
Some solutions for n=6
..2....0....1....2....0....0....1....0....0....0....0....2....3....2....2....0
..3....0....3....2....0....0....3....3....1....0....2....2....3....3....2....1
..1....2....2....1....3....1....0....3....3....1....2....0....2....3....2....3
..3....2....2....3....3....3....0....2....1....3....0....3....1....2....2....0
..1....1....2....1....2....1....2....0....3....3....0....3....1....2....3....1
..2....3....2....3....3....3....2....1....3....3....2....1....3....2....3....3
A200465
Number of 0..4 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 5.
Original entry on oeis.org
5, 15, 45, 135, 405, 1213, 3627, 10846, 32429, 96970, 289870, 866499, 2590128, 7742621, 23144448, 69183744, 206804024, 618180094, 1847865864, 5523643627, 16511274210, 49355507149, 147533484214, 441007079909, 1318258258809
Offset: 1
Some solutions for n=6
..2....2....3....0....2....0....0....1....0....1....0....0....2....1....0....3
..3....4....3....2....3....0....1....4....2....4....0....1....2....1....3....4
..1....1....4....4....3....3....3....1....3....0....1....4....4....4....3....4
..1....4....2....1....3....4....4....4....4....2....4....2....4....4....1....1
..2....1....2....3....1....4....4....3....4....4....1....3....2....2....3....2
..3....0....3....2....0....3....2....3....4....4....2....1....3....1....4....4
A200466
Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 6.
Original entry on oeis.org
6, 21, 75, 267, 951, 3328, 11576, 40309, 140298, 487872, 1695490, 5890943, 20469215, 71122969, 247110741, 858548734, 2982886197, 10363606865, 36006690099, 125099226783, 434636165827, 1510070809645, 5246488474683, 18228043608602
Offset: 1
Some solutions for n=6
..2....1....3....1....0....1....0....1....0....3....0....0....1....0....4....3
..4....2....5....3....2....1....1....3....4....3....1....2....5....0....4....4
..4....5....5....5....4....4....1....5....4....2....5....4....0....4....4....5
..4....4....4....4....1....0....4....3....5....5....1....2....2....4....0....1
..3....3....5....4....5....1....0....1....2....2....1....4....5....4....0....2
..4....2....2....5....1....3....2....2....4....0....2....4....1....0....2....0
A200467
Number of 0..6 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 7.
Original entry on oeis.org
7, 28, 112, 448, 1792, 7140, 28434, 113193, 450812, 1795581, 7151892, 28486092, 113459436, 451907189, 1799936702, 7169108310, 28554377148, 113731374269, 452989138551, 1804244048124, 7186257254293, 28622677050945, 114003380196965
Offset: 1
Some solutions for n=6:
..2....1....1....5....3....4....0....0....4....5....0....3....3....1....4....4
..6....2....6....5....4....6....1....3....4....6....4....4....5....1....5....4
..1....4....3....5....5....4....1....5....2....5....6....0....6....2....5....6
..3....2....5....1....6....6....2....1....5....5....5....1....2....5....2....1
..5....6....1....3....6....6....5....3....3....4....1....4....2....2....4....1
..4....0....3....1....6....3....3....5....0....6....4....2....5....4....2....6
A200468
Number of 0..7 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 8.
Original entry on oeis.org
8, 36, 164, 750, 3434, 15446, 69136, 309748, 1386973, 6207948, 27781867, 124317636, 556310068, 2489502301, 11140314293, 49852273554, 223086037878, 998302588120, 4467360525658, 19991251154656, 89460006607948, 400329985806851
Offset: 1
Some solutions for n=6
..3....3....2....0....3....2....2....3....1....0....4....4....1....4....1....5
..7....6....6....5....5....2....6....5....4....4....4....4....4....4....1....5
..4....4....3....6....3....6....4....3....5....6....0....1....5....3....7....7
..6....6....6....7....6....4....6....5....3....6....3....2....6....5....7....1
..4....6....3....6....2....7....2....1....7....2....5....4....1....7....7....4
..7....7....6....7....4....4....3....7....4....5....4....5....2....3....7....5
A200470
Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its four previous neighbors modulo (n+1).
Original entry on oeis.org
20, 98, 455, 1213, 3328, 7140, 15446, 28023, 51356, 85228, 141665, 217763, 335496, 489964, 716380, 1000977, 1400376, 1894984, 2565347, 3373769, 4439204, 5709980, 7346722, 9262315, 11681488, 14491782, 17981005, 21979651, 26872568, 32446832
Offset: 1
Some solutions for n=6
..4....2....0....0....2....4....4....0....3....3....0....6....3....0....4....0
..4....3....0....2....2....5....6....1....5....5....2....6....5....0....6....2
..3....5....0....2....4....5....6....3....3....1....5....6....3....2....4....6
..5....5....3....4....5....5....5....4....4....3....1....4....5....2....3....2
..2....1....5....1....6....5....5....6....5....5....6....6....5....4....3....5
..0....5....2....5....3....6....4....2....3....5....6....6....6....6....5....4
A200471
Number of 0..n arrays x(0..6) of 7 elements with each no smaller than the sum of its four previous neighbors modulo (n+1).
Original entry on oeis.org
29, 199, 1120, 3627, 11576, 28434, 69136, 139566, 281169, 509465, 917176, 1519297, 2507652, 3907871, 6070416, 8983497, 13266213, 18901105, 26867168, 37023721, 50931188, 68369984, 91636040, 120165960, 157385059, 202502115, 260240316
Offset: 1
Some solutions for n=6
..3....0....2....3....0....0....2....0....1....4....1....4....2....5....1....3
..6....1....5....4....2....3....5....3....6....5....6....6....3....6....2....4
..4....5....1....1....5....4....3....6....5....6....3....5....5....5....4....0
..6....6....6....6....6....2....6....6....6....4....3....2....5....6....5....6
..6....6....5....3....6....6....2....6....6....5....6....3....2....2....5....6
..1....4....4....0....6....4....2....4....2....6....4....5....6....5....6....2
..6....0....2....5....3....2....6....1....5....0....2....1....4....5....6....3
Showing 1-9 of 9 results.
Comments