cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A200462 Number of 0..1 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 2.

Original entry on oeis.org

2, 3, 5, 8, 13, 20, 29, 43, 63, 91, 130, 184, 262, 370, 519, 724, 1010, 1408, 1955, 2705, 3735, 5157, 7107, 9775, 13418, 18406, 25227, 34529, 47200, 64455, 87969, 119952, 163415, 222427, 302568, 411334, 558808, 758640, 1029312, 1395882, 1891970
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2011

Keywords

Examples

			Some solutions for n=6:
  0   1   0   0   0   0   1   1   0   0   0   0   0   1   1   1
  0   1   1   0   0   0   1   1   1   0   1   0   1   1   1   1
  1   1   1   0   0   0   0   1   1   0   1   1   1   1   0   0
  1   1   0   1   0   0   0   1   0   1   1   1   0   1   0   0
  0   1   0   1   1   0   1   1   1   1   1   0   0   0   0   1
  0   1   0   0   1   0   1   0   1   1   0   1   1   1   1   0
		

Crossrefs

Column 1 of A200469.

Programs

  • Maple
    Configs:=  [seq(convert(16+i,base,2)[1..4],i=0..15)]:
    Compatible:= proc(i,j)
     if not Configs[i][2..4]=Configs[j][1..3] then return 0 fi;
     if convert(Configs[i],`+`) mod 2 <= Configs[j][4]
     then 1 else 0
     fi
    end proc:
    T:= Matrix(16,16,Compatible):
    initconfigs:= select(t -> t[1] <= t[2] and t[1]+t[2] mod 2 <= t[3] and t[1]+t[2]+t[3] mod 2 <= t[4], Configs):
    u0:= Vector(16, i -> `if`(member(Configs[i],initconfigs),1,0)):
    2,3,5,8,seq(u0^%T . T^i . e, i=1..40); # Robert Israel, Dec 11 2023

Formula

a(n) - a(n + 1) + a(n + 3) + a(n + 4) - 5*a(n + 5) + 2*a(n + 6) + 2*a(n + 7) - 2*a(n + 8) - 2*a(n + 9) + 5*a(n + 10) - a(n + 11) - 2*a(n + 12) + 2*a(n + 13) - 2*a(n + 15) + a(n + 16) = 0. - Robert Israel, Dec 11 2023

A200463 Number of 0..2 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 3.

Original entry on oeis.org

3, 6, 12, 24, 48, 98, 199, 400, 800, 1597, 3188, 6360, 12679, 25273, 50376, 100400, 200077, 398698, 794502, 1583212, 3154828, 6286514, 12526942, 24961994, 49740765, 99116372, 197505241, 393560803, 784232662, 1562708632, 3113946596, 6205036280
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2011

Keywords

Comments

Column 2 of A200469

Examples

			Some solutions for n=6
..1....0....1....1....0....1....0....0....0....0....2....1....0....1....0....0
..2....0....2....2....0....2....0....0....1....2....2....2....0....2....2....0
..0....0....0....2....0....1....1....1....2....2....2....1....0....1....2....0
..0....0....0....2....2....2....1....2....1....2....0....1....0....2....2....1
..0....0....2....2....2....1....2....0....2....0....2....2....1....1....1....2
..2....0....2....2....1....0....2....2....1....2....0....2....2....2....1....2
		

Programs

  • Maple
    Configs:=  [seq(convert(81+i,base,3)[1..4],i=0..80)]:
    Compatible:= proc(i,j)
     if not Configs[i][2..4]=Configs[j][1..3] then return 0 fi;
     if convert(Configs[i],`+`) mod 3 <= Configs[j][4]
     then 1 else 0
     fi
    end proc:
    T:= Matrix(81,81,Compatible):
    initconfigs:= select(t -> t[1] <= t[2] and t[1]+t[2] mod 3 <= t[3] and t[1]+t[2]+t[3] mod 3 <= t[4], Configs):
    u0:= Vector(81, i -> `if`(member(Configs[i],initconfigs),1,0)):
    e:= Vector(81,1):
    3, 6, 12, seq(u0^%T . T^i . e, i=0..30); # Robert Israel, Dec 11 2023

Formula

a(n) - 3*a(n + 1) + 3*a(n + 2) - a(n + 3) + 2*a(n + 4) - 2*a(n + 5) - 4*a(n + 6) + 7*a(n + 7) - 2*a(n + 9) + 2*a(n + 10) - 10*a(n + 11) + 11*a(n + 12) + 3*a(n + 13) - 9*a(n + 14) + 7*a(n + 15) - 17*a(n + 16) + 22*a(n + 17) - 20*a(n + 18) + 24*a(n + 19) - 24*a(n + 20) + 13*a(n + 21) - 27*a(n + 22) + 36*a(n + 23) - 13*a(n + 24) - a(n + 25) - 11*a(n + 26) - 14*a(n + 27) + 42*a(n + 28) - 17*a(n + 29) + 9*a(n + 30) - 36*a(n + 31) + 17*a(n + 32) + 28*a(n + 33) - 19*a(n + 34) - 4*a(n + 35) + 22*a(n + 36) - 47*a(n + 37) + 82*a(n + 38) - 113*a(n + 39) + 135*a(n + 40) - 111*a(n + 41) + 45*a(n + 42) - a(n + 43) - 6*a(n + 44) + 43*a(n + 45) - 47*a(n + 46) + 17*a(n + 47) - 34*a(n + 48) + 42*a(n + 50) - 18*a(n + 51) + 10*a(n + 52) - 25*a(n + 53) + 45*a(n + 54) - 30*a(n + 55) - 18*a(n + 56) + 22*a(n + 57) - 20*a(n + 58) + 5*a(n + 59) + 27*a(n + 60) - 20*a(n + 61) + 5*a(n + 62) - 8*a(n + 63) + 23*a(n + 64) - 31*a(n + 65) + 14*a(n + 66) + 6*a(n + 67) - 24*a(n + 68) + 20*a(n + 69) + 5*a(n + 71) - 9*a(n + 72) + 3*a(n + 73) - 4*a(n + 74) - 6*a(n + 75) + 12*a(n + 76) - 4*a(n + 77) + 2*a(n + 79) - 3*a(n + 80) + a(n + 81) = 0. - Robert Israel, Dec 11 2023

A200464 Number of 0..3 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 4.

Original entry on oeis.org

4, 10, 26, 69, 181, 455, 1120, 2794, 6955, 17254, 42770, 105825, 262026, 648672, 1605786, 3974375, 9835789, 24343416, 60250311, 149117782, 369056036, 913396093, 2260628044, 5594995167, 13847440350, 34272006253, 84822308047, 209933077581
Offset: 1

Views

Author

R. H. Hardin Nov 18 2011

Keywords

Comments

Column 3 of A200469

Examples

			Some solutions for n=6
..2....0....1....2....0....0....1....0....0....0....0....2....3....2....2....0
..3....0....3....2....0....0....3....3....1....0....2....2....3....3....2....1
..1....2....2....1....3....1....0....3....3....1....2....0....2....3....2....3
..3....2....2....3....3....3....0....2....1....3....0....3....1....2....2....0
..1....1....2....1....2....1....2....0....3....3....0....3....1....2....3....1
..2....3....2....3....3....3....2....1....3....3....2....1....3....2....3....3
		

A200465 Number of 0..4 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 5.

Original entry on oeis.org

5, 15, 45, 135, 405, 1213, 3627, 10846, 32429, 96970, 289870, 866499, 2590128, 7742621, 23144448, 69183744, 206804024, 618180094, 1847865864, 5523643627, 16511274210, 49355507149, 147533484214, 441007079909, 1318258258809
Offset: 1

Views

Author

R. H. Hardin Nov 18 2011

Keywords

Comments

Column 4 of A200469

Examples

			Some solutions for n=6
..2....2....3....0....2....0....0....1....0....1....0....0....2....1....0....3
..3....4....3....2....3....0....1....4....2....4....0....1....2....1....3....4
..1....1....4....4....3....3....3....1....3....0....1....4....4....4....3....4
..1....4....2....1....3....4....4....4....4....2....4....2....4....4....1....1
..2....1....2....3....1....4....4....3....4....4....1....3....2....2....3....2
..3....0....3....2....0....3....2....3....4....4....2....1....3....1....4....4
		

A200466 Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 6.

Original entry on oeis.org

6, 21, 75, 267, 951, 3328, 11576, 40309, 140298, 487872, 1695490, 5890943, 20469215, 71122969, 247110741, 858548734, 2982886197, 10363606865, 36006690099, 125099226783, 434636165827, 1510070809645, 5246488474683, 18228043608602
Offset: 1

Views

Author

R. H. Hardin Nov 18 2011

Keywords

Comments

Column 5 of A200469

Examples

			Some solutions for n=6
..2....1....3....1....0....1....0....1....0....3....0....0....1....0....4....3
..4....2....5....3....2....1....1....3....4....3....1....2....5....0....4....4
..4....5....5....5....4....4....1....5....4....2....5....4....0....4....4....5
..4....4....4....4....1....0....4....3....5....5....1....2....2....4....0....1
..3....3....5....4....5....1....0....1....2....2....1....4....5....4....0....2
..4....2....2....5....1....3....2....2....4....0....2....4....1....0....2....0
		

A200467 Number of 0..6 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 7.

Original entry on oeis.org

7, 28, 112, 448, 1792, 7140, 28434, 113193, 450812, 1795581, 7151892, 28486092, 113459436, 451907189, 1799936702, 7169108310, 28554377148, 113731374269, 452989138551, 1804244048124, 7186257254293, 28622677050945, 114003380196965
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2011

Keywords

Examples

			Some solutions for n=6:
..2....1....1....5....3....4....0....0....4....5....0....3....3....1....4....4
..6....2....6....5....4....6....1....3....4....6....4....4....5....1....5....4
..1....4....3....5....5....4....1....5....2....5....6....0....6....2....5....6
..3....2....5....1....6....6....2....1....5....5....5....1....2....5....2....1
..5....6....1....3....6....6....5....3....3....4....1....4....2....2....4....1
..4....0....3....1....6....3....3....5....0....6....4....2....5....4....2....6
		

Crossrefs

Column 6 of A200469.

A200468 Number of 0..7 arrays x(0..n-1) of n elements with each no smaller than the sum of its four previous neighbors modulo 8.

Original entry on oeis.org

8, 36, 164, 750, 3434, 15446, 69136, 309748, 1386973, 6207948, 27781867, 124317636, 556310068, 2489502301, 11140314293, 49852273554, 223086037878, 998302588120, 4467360525658, 19991251154656, 89460006607948, 400329985806851
Offset: 1

Views

Author

R. H. Hardin Nov 18 2011

Keywords

Comments

Column 7 of A200469

Examples

			Some solutions for n=6
..3....3....2....0....3....2....2....3....1....0....4....4....1....4....1....5
..7....6....6....5....5....2....6....5....4....4....4....4....4....4....1....5
..4....4....3....6....3....6....4....3....5....6....0....1....5....3....7....7
..6....6....6....7....6....4....6....5....3....6....3....2....6....5....7....1
..4....6....3....6....2....7....2....1....7....2....5....4....1....7....7....4
..7....7....6....7....4....4....3....7....4....5....4....5....2....3....7....5
		

A200470 Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its four previous neighbors modulo (n+1).

Original entry on oeis.org

20, 98, 455, 1213, 3328, 7140, 15446, 28023, 51356, 85228, 141665, 217763, 335496, 489964, 716380, 1000977, 1400376, 1894984, 2565347, 3373769, 4439204, 5709980, 7346722, 9262315, 11681488, 14491782, 17981005, 21979651, 26872568, 32446832
Offset: 1

Views

Author

R. H. Hardin Nov 18 2011

Keywords

Comments

Row 6 of A200469

Examples

			Some solutions for n=6
..4....2....0....0....2....4....4....0....3....3....0....6....3....0....4....0
..4....3....0....2....2....5....6....1....5....5....2....6....5....0....6....2
..3....5....0....2....4....5....6....3....3....1....5....6....3....2....4....6
..5....5....3....4....5....5....5....4....4....3....1....4....5....2....3....2
..2....1....5....1....6....5....5....6....5....5....6....6....5....4....3....5
..0....5....2....5....3....6....4....2....3....5....6....6....6....6....5....4
		

Formula

Empirical: a(n) = a(n-2) +a(n-4) -a(n-6) +3*a(n-8) -3*a(n-10) -3*a(n-12) +3*a(n-14) +2*a(n-15) -3*a(n-16) -2*a(n-17) +3*a(n-18) -2*a(n-19) +3*a(n-20) +2*a(n-21) -3*a(n-22) -6*a(n-23) +a(n-24) +6*a(n-25) -a(n-26) +6*a(n-27) -a(n-28) -6*a(n-29) +6*a(n-31) +a(n-32) -6*a(n-33) +a(n-34) -6*a(n-35) -a(n-36) +6*a(n-37) +3*a(n-38) -2*a(n-39) -3*a(n-40) +2*a(n-41) -3*a(n-42) +2*a(n-43) +3*a(n-44) -2*a(n-45) -3*a(n-46) +3*a(n-48) +3*a(n-50) -3*a(n-52) +a(n-54) -a(n-56) -a(n-58) +a(n-60)

A200471 Number of 0..n arrays x(0..6) of 7 elements with each no smaller than the sum of its four previous neighbors modulo (n+1).

Original entry on oeis.org

29, 199, 1120, 3627, 11576, 28434, 69136, 139566, 281169, 509465, 917176, 1519297, 2507652, 3907871, 6070416, 8983497, 13266213, 18901105, 26867168, 37023721, 50931188, 68369984, 91636040, 120165960, 157385059, 202502115, 260240316
Offset: 1

Views

Author

R. H. Hardin, Nov 18 2011

Keywords

Comments

Row 7 of A200469.

Examples

			Some solutions for n=6
..3....0....2....3....0....0....2....0....1....4....1....4....2....5....1....3
..6....1....5....4....2....3....5....3....6....5....6....6....3....6....2....4
..4....5....1....1....5....4....3....6....5....6....3....5....5....5....4....0
..6....6....6....6....6....2....6....6....6....4....3....2....5....6....5....6
..6....6....5....3....6....6....2....6....6....5....6....3....2....2....5....6
..1....4....4....0....6....4....2....4....2....6....4....5....6....5....6....2
..6....0....2....5....3....2....6....1....5....0....2....1....4....5....6....3
		

Crossrefs

Cf. A200469.
Showing 1-9 of 9 results.