This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200474 #36 Feb 16 2025 08:33:16 %S A200474 3,6,2,4,6,1,5,3,1,2,4,3,1,3,2,1,3,2,3,3,1,0,1,0,1,6,1,2,0,4,0,2,2,1, %T A200474 2,2,0,3,0,1,0,4,4,1,0,1,2,0,3,1,1,1,0,1,1,0,3,4,1,0,1,4,1,2,0,1,1,2, %U A200474 1,1,1,1,2,1,2,2,0,2,0,1,1,1,2,1,0,1,3 %N A200474 a(n) = floor(10*(prime(n+1)-prime(n))/log(prime(n))^2). %C A200474 Cramer's conjecture is true if, for every n >= 5, a(n) is smaller than 10. %C A200474 If Cramer's conjecture is true, then Andrica's conjecture is true. [_John W. Nicholson_, Feb 06 2012] %C A200474 Some mathematicians are trying to prove: if Andrica's conjecture is true, then Cramer's conjecture is true. [_Arkadiusz Wesolowski_, Feb 22 2012] %H A200474 Arkadiusz Wesolowski, <a href="/A200474/b200474.txt">Table of n, a(n) for n = 5..10000</a> %H A200474 Carlos Rivera, <a href="http://www.primepuzzles.net/conjectures/conj_007.htm">Conjecture 7. The Cramer's Conjecture</a>, The Prime Puzzles and Problems Connection. %H A200474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CramerConjecture.html">Cramer Conjecture</a> %F A200474 a(n) = floor(10*A001223(n)/log(A000040(n))^2), n >= 5. %e A200474 a(9) = 6 because 10*(29-23)/log(23)^2 = 6.1029419977.... %t A200474 Table[Floor[10*(Prime[n + 1] - Prime[n])/Log[Prime[n]]^2], {n, 5, 100}] %Y A200474 Cf. A000040, A001223, A086142, A124129, A200324. %K A200474 nonn %O A200474 5,1 %A A200474 _Arkadiusz Wesolowski_, Nov 18 2011