This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200508 #10 Mar 31 2012 13:48:35 %S A200508 0,0,4,7,0,7,4,0,0,7,4,8,7,20,4,0,7,7,4,7,9,16,4,7,7,16,4,8,0,9,4,7,9, %T A200508 7,4,8,48,7,4,0,7,9,4,8,7,7,4,7,0,20,4,7,7,12,4,0,9,16,4,7,0,7,4,0,0, %U A200508 7,4,8,7,16,4,0,7,7,4,7,32,9,4,7,7,44,4 %N A200508 Least m>0 such that n = 8^x-y^2 (mod m) has no solution, or 0 if no such m exists. %C A200508 If such an m>0 exists, this proves that n is not in A051219, i.e., not of the form 8^x-y^2. On the other hand, if n is in A051219, i.e., there are integers x, y such that n=8^x-y^2, then we know that a(n)=0. %H A200508 M. F. Hasler, <a href="/A200508/b200508.txt">Table of n, a(n) for n = 0..1000</a> %e A200508 See A200507. %o A200508 (PARI) A200508(n,b=8,p=3)={ my( x=0, qr, bx, seen ); for( m=3,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,i,i^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<<bx, bx=bx*b%m), for(i=1,#qr, qr[i]<bx & next; qr[i]>bx & break; next(3))); return(m))} %Y A200508 Cf. A051204-A051221, A200505-A200524. %K A200508 nonn %O A200508 0,3 %A A200508 _M. F. Hasler_, Nov 18 2011