A200509 Least m>0 such that n = 9^x-y^2 (mod m) has no solution, or 0 if no such m exists.
0, 0, 4, 4, 8, 0, 4, 4, 0, 0, 4, 4, 8, 9, 4, 4, 9, 0, 4, 4, 8, 80, 4, 4, 45, 9, 4, 4, 8, 80, 4, 4, 0, 45, 4, 4, 8, 21, 4, 4, 9, 61, 4, 4, 8, 0, 4, 4, 45, 9, 4, 4, 8, 0, 4, 4, 0, 80, 4, 4, 8, 9, 4, 4, 15, 0, 4, 4, 8, 45, 4, 4, 0, 15, 4, 4, 8, 0, 4, 4, 0, 0, 4
Offset: 0
Keywords
Examples
See A200507.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..1000
Programs
-
PARI
A200509(n,b=9,p=3)={ my( x=0, qr, bx, seen ); for( m=3,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,i,i^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<
bx & break; next(3))); return(m))}
Comments