A200510 Least m>0 such that n = 10^x-y^2 (mod m) has no solution, or 0 if no such m exists.
0, 0, 3, 5, 9, 3, 0, 9, 3, 0, 0, 3, 35, 5, 3, 11, 9, 3, 5, 0, 3, 16, 9, 3, 11, 9, 3, 20, 5, 3, 16, 9, 3, 5, 9, 3, 0, 11, 3, 0, 9, 3, 20, 5, 3, 32, 11, 3, 5, 9, 3, 0, 9, 3, 28, 37, 3, 11, 5, 3, 200, 9, 3, 5, 0, 3, 16, 9, 3, 16, 9, 3, 35, 5, 3, 0, 9, 3, 5, 9
Offset: 0
Keywords
Examples
See A200507.
Links
- Seiichi Azuma, Table of n, a(n) for n = 0..2000
Programs
-
PARI
A200510(n,b=10,p=3)={ my( x=0, qr, bx, seen ); for( m=3,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,i,i^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<
bx & break; next(3))); return(m))}
Formula
a(111)=11111.
Comments