A200528 Number of n X 2 0..2 arrays with every row and column running average nondecreasing rightwards and downwards.
6, 20, 57, 146, 354, 825, 1873, 4169, 9144, 19825, 42590, 90815, 192457, 405760, 851740, 1781227, 3713015, 7718092, 16003641, 33111477, 68374642, 140947848, 290098848, 596244613, 1223916576, 2509450811, 5139839214, 10517282966
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..1....1..2....0..0....0..0....0..0....0..0....0..0....0..1....0..0 ..1..1....2..2....1..2....0..2....1..1....0..2....0..1....1..1....1..2....0..1 ..1..2....1..2....1..2....0..1....2..2....0..1....2..2....2..2....1..2....0..2 ..1..1....1..2....2..2....1..1....1..1....0..1....1..1....1..2....2..2....0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A200534.
Formula
Empirical: a(n) = 7*a(n-1) -16*a(n-2) +6*a(n-3) +27*a(n-4) -33*a(n-5) -3*a(n-6) +24*a(n-7) -11*a(n-8) -4*a(n-9) +4*a(n-10).
Empirical g.f.: x*(6 - 22*x + 13*x^2 + 31*x^3 - 38*x^4 - x^5 + 25*x^6 - 11*x^7 - 4*x^8 + 4*x^9) / ((1 - x)*(1 + x)*(1 - 2*x)^2*(1 - x - x^2)*(1 - 2*x + x^3 - x^4)). - Colin Barker, May 21 2018
Comments