cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200544 Number of distinct bags of distinct sequences of 1s and 2s such that the sum of all terms is n.

This page as a plain text file.
%I A200544 #61 Aug 16 2025 22:00:25
%S A200544 1,1,3,6,14,28,61,122,253,505,1017,2008,3976,7769,15169,29379,56751,
%T A200544 108993,208725,397913,756385,1432578,2705744,5094749,9568504,17922756,
%U A200544 33492061,62438472,116151352,215612548,399451325,738612472,1363261171,2511748010,4620024202
%N A200544 Number of distinct bags of distinct sequences of 1s and 2s such that the sum of all terms is n.
%C A200544 This is the number of distinct ways to build minimal Jenga towers out of n blocks. The number of distinct ways to build a single minimal Jenga tower out of n blocks is the Fibonacci number F(n+1) (A000045(n+1)).
%C A200544 To calculate this, first create all partitions of n.
%C A200544 An example partition, for n=4, is
%C A200544   1 1 1 1
%C A200544   1 1 2
%C A200544   1 3
%C A200544   2 2
%C A200544   4
%C A200544 Then each set of towers of the same size gets a configuration. For 2 2 2, for instance, there are two possibilities for each tower (a single level with two blocks or two levels with one block each) but the total possibilities is not 2*2*2=8, since the configuration "1/1,2,2" is the same as "2,1/1,2". Instead we want to choose three towers with repetition from two possibilities which is 3+2-1 choose 3, aka 4C3 = 4.
%C A200544 Multiply all the sets of towers of the same size and sum over partitions for the result.
%C A200544 For n=4, then, 1 1 2 becomes "1 with multiplicity 2" and "2 with multiplicity 1".
%C A200544 There is f(1+1)=1 way to build a tower of size 1, and f(1+1)+2-1 choose 2 = 2C2 = 1 way to build 2 towers of size 1. f(2+1)=2 ways to build a tower of size 2. 1 1 2 has 1*2=2 ways to be built. Sum over each of the 5 partitions of n=4.
%C A200544 This is apparently the limit of the row-reversed rows of the Multiset transform T(n,k) of the Fibonacci sequence in A337009, a(k) = lim_{n->oo} T(n,n-k). - _R. J. Mathar_, Aug 10 2020
%H A200544 Alois P. Heinz, <a href="/A200544/b200544.txt">Table of n, a(n) for n = 0..1000</a>
%H A200544 W. S. Gray, K. Ebrahimi-Fard, <a href="http://arxiv.org/abs/1411.0222">Affine SISO Feedback Transformation Group and Its Faa di Bruno Hopf Algebra</a>, arXiv:1411.0222 [math.OC], 2014.
%H A200544 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1508.01796">Asymptotics of the Euler transform of Fibonacci numbers</a>, arXiv:1508.01796 [math.CO], Aug 07 2015
%H A200544 Vaclav Kotesovec, <a href="/A034691/a034691_1.pdf">Asymptotics of sequence A034691</a>
%H A200544 Sarah Nibs, <a href="/A200544/a200544.cs.txt">C# code to generate sequence terms</a>
%H A200544 Wikipedia, <a href="http://en.wikipedia.org/wiki/Jenga">Jenga</a>
%F A200544 sum{m1*a1+m2*a2+...+mk*ak}(prod{k}(binomial(A000045[ak + 1]+mk-1,mk))).
%F A200544 G.f.: Product_{s>=1}(sum{d>=0}(binomial(F(s+1)+d-1,d)*x^(d*s))). - _Sarah Nibs_, Oct 21 2013
%F A200544 Euler Transform of A000045 starting at index 2, i.e. EULER(1, 2, 3, 5, 8, 13, ...). - _Sarah Nibs_, Nov 05 2013
%F A200544 a(n) ~ phi^(n+1/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 3/5 + 2*5^(-1/4)*sqrt(phi*n) + s), where s = Sum_{k>=2} (1+phi^k) / ((phi^(2*k) - phi^k - 1)*k) = 0.7902214013751085262994702391769374769675268259229550490716908... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Aug 06 2015
%F A200544 a(n) = A337009(2*n,n). - _Alois P. Heinz_, Apr 30 2023
%e A200544 For n = 4, a(4)=14 and the bags are: 1/1/1/1; 1/1/1,1; 1/1/2; 1/1,1,1; 1/1,2; 1/2,1; 1,1/1,1; 1,1/2; 2/1,1; 2/2; 1,1,1,1; 1,1,2; 1,2,1; 2,1,1.
%p A200544 with(numtheory):with(combinat):
%p A200544 a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
%p A200544       fibonacci(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
%p A200544     end:
%p A200544 seq(a(n), n=0..40);  # _Alois P. Heinz_, Nov 05 2013
%t A200544 CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k+1], {k, 1, 40}], {x, 0, 40}], x] (* _Vaclav Kotesovec_, Aug 05 2015 *)
%o A200544 (SageMath) # uses[EulerTransform from A166861]
%o A200544 a = BinaryRecurrenceSequence(1, 1, 1)
%o A200544 b = EulerTransform(a)
%o A200544 print([b(n) for n in range(35)]) # _Peter Luschny_, Nov 11 2020
%Y A200544 Cf. A000045, A034691, A166861, A260787, A337009.
%K A200544 nonn
%O A200544 0,3
%A A200544 _Sarah Nibs_, Nov 18 2011
%E A200544 Corrected terms from n=8 and onwards by _Sarah Nibs_, Oct 18 2013
%E A200544 C# program corrected and made much more efficient by _Sarah Nibs_, Oct 18 2013