cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200545 Triangle T(n,k), read by rows, given by (1,0,2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) DELTA (0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938.

This page as a plain text file.
%I A200545 #17 Feb 21 2019 11:25:47
%S A200545 1,1,0,1,1,0,1,4,1,0,1,13,9,1,0,1,46,56,16,1,0,1,199,334,160,25,1,0,1,
%T A200545 1072,2157,1408,365,36,1,0,1,6985,15701,12445,4417,721,49,1,0,1,53218,
%U A200545 129214,116698,50944,11452,1288,64,1,0,1,462331,1191336,1183216,597026,166716,25956,2136,81,1,0
%N A200545 Triangle T(n,k), read by rows, given by (1,0,2,1,3,2,4,3,5,4,6,5,7,6,8,7,9,8,...) DELTA (0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938.
%C A200545 Row sums : A000142(n) = n!.
%H A200545 Alois P. Heinz, <a href="/A200545/b200545.txt">Rows n = 0..140, flattened</a>
%H A200545 Sergey Kitaev, Philip B. Zhang, <a href="https://arxiv.org/abs/1811.07679">Distributions of mesh patterns of short lengths</a>, arXiv:1811.07679 [math.CO], 2018.
%F A200545 Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A172485(n+1), A146559(n), A000012(n), A000142(n), A003319(n), A111529(n), A111530(n), A111531(n), A111532(n), A111533(n) for x = -2,-1,0,1,2,3,4,5,6,7 respectively.
%F A200545 T(k+2,k)=(k+1)^2 = A000290(k+1).
%F A200545 T(n+1,1)= A014145(n).
%e A200545 Triangle begins :
%e A200545 1
%e A200545 1, 0
%e A200545 1, 1, 0
%e A200545 1, 4, 1, 0
%e A200545 1, 13, 9, 1, 0
%e A200545 1, 46, 56, 16, 1, 0
%e A200545 1, 199, 334, 160, 25, 1, 0
%e A200545 1, 1072, 2157, 1408, 365, 36, 1, 0
%e A200545 1, 6985, 15701, 12445, 4417, 721, 49, 1, 0
%e A200545 1, 53218, 129214, 116698, 50944, 11452, 1288, 64, 1, 0
%t A200545 DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x*r[[k + 1]] + y*s[[k + 1]]; p[0, _] = 1; p[_, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k - 1] + q[k]*p[n - 1, k + 1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n - k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
%t A200545 m = 10;
%t A200545 DELTA[LinearRecurrence[{1, 1, -1}, {1, 0, 2}, m], LinearRecurrence[{0, 1}, {0, 1}, m], m] // Flatten (* _Jean-François Alcover_, Feb 21 2019 *)
%Y A200545 Cf. A000290, A014145,
%K A200545 nonn,tabl
%O A200545 0,8
%A A200545 _Philippe Deléham_, Nov 19 2011