A200554 Number of -n..n arrays x(0..3) of 4 elements with zero sum and nonzero second differences.
14, 76, 200, 446, 836, 1368, 2134, 3140, 4368, 5942, 7852, 10064, 12734, 15836, 19320, 23374, 27956, 33000, 38726, 45076, 51968, 59654, 68060, 77088, 87022, 97772, 109224, 121694, 135076, 149240, 164534, 180836, 198000, 216406, 235916, 256368, 278174, 301180, 325208
Offset: 1
Examples
Some solutions for n=3: .-2....2....2...-1....2...-3...-2...-2....1...-3....0...-1....1....2...-2....2 ..1...-3...-2....0...-1....3...-1....1....0....3...-1...-1...-2...-2...-1....1 ..2....1....0...-1....0....2....3...-2....1...-1....2....1....0...-3....2...-3 .-1....0....0....2...-1...-2....0....3...-2....1...-1....1....1....3....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Row 2 of A200553.
Formula
Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8).
Empirical g.f.: 2*x*(7 + 24*x + 31*x^2 + 47*x^3 + 24*x^4 + 9*x^5 + 2*x^6) / ((1 - x)^4*(1 + x + x^2)^2). - Colin Barker, May 21 2018