A200555 Number of -n..n arrays x(0..4) of 5 elements with zero sum and nonzero second differences.
26, 280, 1184, 3396, 7778, 15476, 27806, 46346, 72902, 109528, 158422, 222162, 303412, 405134, 530518, 683014, 866156, 1083954, 1340420, 1639900, 1986968, 2386470, 2843276, 3362828, 3950486, 4611980, 5353268, 6180592, 7100158, 8118840
Offset: 1
Keywords
Examples
Some solutions for n=3: ..3...-2...-3....0...-2....3...-2....2...-3...-2...-1....2....1....2...-2....3 ..0...-3....2...-1....3...-1...-2....2....3....3....1....2....1...-2....1...-1 .-2....1....1....3....0....1....2...-1....0...-3...-2...-2...-2....2...-3...-3 ..2....2....1...-2....1...-3....1...-2....2...-1....2....1...-1...-3....1....2 .-3....2...-1....0...-2....0....1...-1...-2....3....0...-3....1....1....3...-1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200553.
Formula
Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-4) -3*a(n-5) +3*a(n-6) +3*a(n-7) -2*a(n-9) -a(n-10) +a(n-11).
Empirical g.f.: 2*x*(13 + 127*x + 426*x^2 + 826*x^3 + 1046*x^4 + 912*x^5 + 544*x^6 + 205*x^7 + 37*x^8 + 4*x^9) / ((1 - x)^5*(1 + x)^2*(1 + x + x^2)^2). - Colin Barker, May 21 2018
Comments