A200583 Table read by rows, n >= 1, 1 <= k <= card(divisors(n)), T(n,k) meanders of length n and central angle of 360/d degrees, d the k-th divisor of n.
1, 2, 1, 4, 1, 8, 3, 1, 16, 1, 32, 10, 4, 1, 64, 1, 128, 35, 5, 1, 256, 22, 1, 512, 126, 6, 1, 1024, 1, 2048, 462, 134, 46, 7, 1, 4096, 1, 8192, 1716, 8, 1, 16384, 866, 94, 1, 32768, 6435, 485, 9, 1, 65536, 1, 131072, 24310, 5812, 190, 10, 1, 262144, 1, 524288
Offset: 1
Examples
[ 1] 1 [ 2] 2, 1 [ 3] 4, 1 [ 4] 8, 3, 1 [ 5] 16, 1 [ 6] 32, 10, 4, 1 [ 7] 64, 1 [ 8] 128, 35, 5, 1 [ 9] 256, 22, 1 [10] 512, 126, 6, 1 [11] 1024, 1 [12] 2048, 462, 134, 46, 7, 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..482
- Peter Luschny, Meander.
Programs
-
Maple
A200583_row := proc(n) local i; seq(A198060(i-1,n/i-1),i=numtheory[divisors](n)) end: seq(print(A200583_row(i)),i=1..12);
-
Mathematica
A198060[m_, n_] := Sum[Sum[Sum[(-1)^(j+i)*Binomial[i, j]*Binomial[n, k]^(m+1)*(n+1)^j*(k+1)^(m-j)/(k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; row[n_] := Table[A198060[d-1, n/d-1], {d, Divisors[n]}]; Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
Formula
T(n,k) = A198060(d-1,n/d-1) where d is the k-th divisor of n (the divisors in natural order).
Comments