cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200595 Decimal expansion of least x>0 satisfying 3*x^2-3*x+4=tan(x).

This page as a plain text file.
%I A200595 #7 Dec 07 2014 09:47:28
%S A200595 1,3,9,5,8,5,1,3,6,0,6,2,1,1,4,9,0,7,4,2,7,3,3,7,7,9,0,3,8,5,6,2,9,4,
%T A200595 1,8,1,3,8,6,2,5,9,2,9,3,6,6,7,1,2,8,5,3,4,1,1,5,7,8,9,5,2,1,2,5,9,4,
%U A200595 3,7,2,5,3,3,8,5,0,8,2,3,6,6,7,8,3,1,4,5,0,3,2,9,1,1,4,1,5,2,3
%N A200595 Decimal expansion of least x>0 satisfying 3*x^2-3*x+4=tan(x).
%C A200595 See A200338 for a guide to related sequences. The Mathematica program includes a graph.
%e A200595 1.3958513606211490742733779038562941813862592...
%t A200595 a = 3; b = -3; c = 4;
%t A200595 f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
%t A200595 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200595 r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
%t A200595 RealDigits[r]     (* A200595 *)
%o A200595 (PARI) solve(x=1,2,3*x^2-3*x+4-tan(x)) \\ _Charles R Greathouse IV_, Dec 07 2014
%Y A200595 Cf. A200338.
%K A200595 nonn,cons
%O A200595 1,2
%A A200595 _Clark Kimberling_, Nov 19 2011