cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200601 Decimal expansion of least x > 0 satisfying 4*x^2 - x + 2 = tan(x).

This page as a plain text file.
%I A200601 #12 Feb 07 2025 16:44:07
%S A200601 1,4,6,1,0,8,1,7,4,3,4,8,8,1,8,9,4,1,5,2,6,5,5,8,1,2,2,8,9,5,8,0,8,2,
%T A200601 0,8,8,0,2,7,4,7,9,8,7,8,0,1,7,0,9,4,7,4,2,4,0,0,2,2,8,4,6,8,3,0,1,8,
%U A200601 6,2,1,2,3,6,0,8,9,1,7,0,7,8,5,8,6,4,1,9,9,7,3,7,3,9,4,9,7,2,8
%N A200601 Decimal expansion of least x > 0 satisfying 4*x^2 - x + 2 = tan(x).
%C A200601 See A200338 for a guide to related sequences. The Mathematica program includes a graph.
%H A200601 Iain Fox, <a href="/A200601/b200601.txt">Table of n, a(n) for n = 1..20000</a>
%e A200601 x=1.461081743488189415265581228958082088027479878...
%t A200601 a = 4; b = -1; c = 2;
%t A200601 f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
%t A200601 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200601 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
%t A200601 RealDigits[r]    (* A200601 *)
%o A200601 (PARI) solve(x=1, 1.5, 4*x^2 - x + 2 - tan(x)) \\ _Iain Fox_, Mar 07 2018
%Y A200601 Cf. A200338.
%K A200601 nonn,cons
%O A200601 1,2
%A A200601 _Clark Kimberling_, Nov 19 2011