cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200610 Decimal expansion of least x>0 satisfying 4*x^2-4*x+1=tan(x).

This page as a plain text file.
%I A200610 #6 Feb 07 2025 16:44:07
%S A200610 2,4,8,2,6,0,9,1,4,5,2,3,0,8,3,2,1,9,8,7,0,8,3,3,6,3,7,2,2,8,9,0,9,5,
%T A200610 7,5,3,3,4,8,9,8,6,1,0,0,9,9,4,3,5,5,5,5,0,0,9,8,6,2,9,7,6,6,7,2,3,3,
%U A200610 5,2,5,3,7,0,6,2,8,0,2,9,6,1,7,5,2,3,0,4,9,8,7,9,1,2,4,9,8,0,8
%N A200610 Decimal expansion of least x>0 satisfying 4*x^2-4*x+1=tan(x).
%C A200610 See A200338 for a guide to related sequences. The Mathematica program includes a graph.
%e A200610 x=0.2482609145230832198708336372289095753348986100...
%t A200610 a = 4; b = -4; c = 1;
%t A200610 f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
%t A200610 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200610 r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
%t A200610 RealDigits[r]   (* A200610 *)
%Y A200610 Cf. A200338.
%K A200610 nonn,cons
%O A200610 0,1
%A A200610 _Clark Kimberling_, Nov 19 2011