This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200614 #23 Jan 30 2025 17:43:51 %S A200614 8,3,9,5,8,2,2,5,9,0,4,5,3,0,2,9,4,1,5,1,3,7,6,4,0,0,8,8,6,3,8,0,4,9, %T A200614 8,6,3,0,8,4,1,6,5,4,1,0,2,6,9,4,4,0,9,0,0,3,3,4,9,1,4,3,4,0,6,7,6,5, %U A200614 8,4,1,4,6,1,0,4,1,1,6,7,4,2,5,9,5,3,5,3,0,0,2,3,6,6,2,4,6,0,5 %N A200614 Decimal expansion of the lesser of two values of x satisfying 3*x^2 - 1 = tan(x) and 0 < x < Pi/2. %C A200614 For many choices of a and c, there are exactly two values of x satisfying a*x^2 - c = tan(x) and 0 < x < Pi/2; for other choices, there is exactly once such value. %C A200614 Guide to related sequences, with graphs included in Mathematica programs: %C A200614 a.... c.... x %C A200614 3.... 1.... A200614, A200615 %C A200614 4.... 1.... A200616, A200617 %C A200614 5.... 1.... A200620, A200621 %C A200614 5.... 2.... A200622, A200623 %C A200614 5.... 3.... A200624, A200625 %C A200614 5.... 4.... A200626, A200627 %C A200614 5... -1.... A200628 %C A200614 5... -2.... A200629 %C A200614 5... -3.... A200630 %C A200614 5... -4.... A200631 %C A200614 6.... 1.... A200633, A200634 %C A200614 6.... 5.... A200635, A200636 %C A200614 6... -1.... A200637 %C A200614 6... -5.... A200638 %C A200614 1... -5.... A200639 %C A200614 2... -5.... A200640 %C A200614 3... -5.... A200641 %C A200614 4... -5.... A200642 %C A200614 2.... 0.... A200679, A200680 %C A200614 3.... 0.... A200681, A200682 %C A200614 4.... 0.... A200683, A200684 %C A200614 5.... 0.... A200618 %C A200614 6.... 0.... A200632 %C A200614 7.... 0.... A200643 %C A200614 8.... 0.... A200644 %C A200614 9.... 0.... A200645 %C A200614 10... 0.... A200646 %C A200614 -1... 1.... A200685 %C A200614 -1... 2.... A200686 %C A200614 -1... 3.... A200687 %C A200614 -1... 4.... A200688 %C A200614 -1... 5.... A200689 %C A200614 -1... 6.... A200690 %C A200614 -1... 7.... A200691 %C A200614 -1... 8.... A200692 %C A200614 -1... 9.... A200693 %C A200614 -1... 10... A200694 %C A200614 -2... 1.... A200695 %C A200614 -2... 3.... A200696 %C A200614 -3... 1.... A200697 %C A200614 -3... 2.... A200698 %C A200614 -4... 1.... A200699 %C A200614 -5... 1.... A200700 %C A200614 -6... 1.... A200701 %C A200614 -7... 1.... A200702 %C A200614 -8... 1.... A200703 %C A200614 -9... 1.... A200704 %C A200614 -10.. 1.... A200705 %C A200614 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A200614 For an example related to A200614, take f(x,u,v) = u*x^2 - v = tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A200614 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200614 lesser: 0.839582259045302941513764008863804986308... %e A200614 greater: 1.350956593976519397744696294368524715373... %t A200614 (* Program 1: A200614 and A200615 *) %t A200614 a = 3; c = 1; %t A200614 f[x_] := a*x^2 - c; g[x_] := Tan[x] %t A200614 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] %t A200614 r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110] %t A200614 RealDigits[r] (* A200614 *) %t A200614 r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] %t A200614 RealDigits[r] (* A200615 *) %t A200614 (* Program 2: implicit surface of u*x^2-v=tan(x) *) %t A200614 f[{x_, u_, v_}] := u*x^2 - v - Tan[x]; %t A200614 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.55}]}, {u, 1, 20}, {v, -20, 0}]; %t A200614 ListPlot3D[Flatten[t, 1]] (* for A200614 *) %Y A200614 Cf. A200615, A200338. %K A200614 nonn,cons %O A200614 0,1 %A A200614 _Clark Kimberling_, Nov 20 2011