This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200621 #10 Jan 30 2025 12:18:09 %S A200621 1,4,6,9,0,0,2,7,1,9,5,1,3,6,1,0,6,1,3,2,2,3,3,6,2,5,9,7,5,8,3,6,3,2, %T A200621 4,1,1,2,7,8,0,0,0,3,4,6,1,5,3,5,7,4,6,4,8,5,8,8,7,7,3,5,8,6,2,2,8,1, %U A200621 7,2,0,1,8,4,8,3,0,6,1,0,4,5,6,4,2,4,9,0,1,9,0,6,6,9,7,6,7,0,9 %N A200621 Decimal expansion of the greater of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2. %C A200621 See A200614 for a guide to related sequences. The Mathematica program includes a graph. %H A200621 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200621 lesser: 0.5738256142207075194706993073950289720400... %e A200621 greater: 1.469002719513610613223362597583632411278000... %t A200621 a = 5; c = 1; %t A200621 f[x_] := a*x^2 - c; g[x_] := Tan[x] %t A200621 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] %t A200621 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A200621 RealDigits[r] (* A200620 *) %t A200621 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A200621 RealDigits[r] (* A200621 *) %Y A200621 Cf. A200614. %K A200621 nonn,cons %O A200621 1,2 %A A200621 _Clark Kimberling_, Nov 20 2011