This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200625 #10 Jan 30 2025 13:17:05 %S A200625 1,4,3,4,4,3,6,7,9,8,5,3,1,0,6,4,8,8,2,7,1,8,8,6,4,3,5,1,3,5,4,3,3,5, %T A200625 8,5,0,3,4,3,9,6,6,8,1,5,1,2,5,3,6,8,1,7,1,8,4,8,5,3,0,2,3,6,4,7,1,1, %U A200625 6,6,0,5,2,5,8,3,9,9,2,6,4,1,9,5,5,1,8,5,9,7,6,8,1,3,6,1,6,6,6 %N A200625 Decimal expansion of the greater of two values of x satisfying 5*x^2 - 3 = tan(x) and 0 < x < Pi/2. %C A200625 See A200614 for a guide to related sequences. The Mathematica program includes a graph. %H A200625 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200625 lesser: 0.9325170518642294819498571898931399897... %e A200625 greater: 1.4344367985310648827188643513543358503... %t A200625 a = 5; c = 3; %t A200625 f[x_] := a*x^2 - c; g[x_] := Tan[x] %t A200625 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] %t A200625 r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110] %t A200625 RealDigits[r] (* A200624 *) %t A200625 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A200625 RealDigits[r] (* A200625 *) %Y A200625 Cf. A200614. %K A200625 nonn,cons %O A200625 1,2 %A A200625 _Clark Kimberling_, Nov 20 2011