A200634 Decimal expansion of the greater of two values of x satisfying 6*x^2 - 1 = tan(x) and 0 < x < Pi/2.
1, 4, 8, 9, 7, 8, 3, 6, 5, 6, 0, 8, 3, 4, 9, 8, 2, 2, 0, 9, 6, 6, 8, 1, 7, 9, 8, 6, 8, 6, 0, 6, 7, 1, 4, 7, 5, 0, 4, 2, 6, 1, 4, 1, 5, 1, 4, 5, 8, 4, 9, 3, 2, 5, 8, 7, 9, 8, 2, 4, 1, 9, 1, 4, 6, 2, 0, 1, 1, 9, 1, 7, 6, 2, 2, 0, 1, 7, 8, 7, 0, 3, 4, 0, 1, 8, 8, 7, 0, 9, 4, 1, 5, 0, 3, 8, 8, 8, 6
Offset: 1
Examples
lesser: 0.50974170891854848924604966585258686270831... greater: 1.48978365608349822096681798686067147504261...
Crossrefs
Cf. A200614.
Programs
-
Mathematica
a = 6; c = 1; f[x_] := a*x^2 - c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A200633 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200634 *)
Comments