cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200638 Decimal expansion of least x>0 satisfying 6*x^2+5=tan(x).

This page as a plain text file.
%I A200638 #10 Feb 07 2025 16:44:07
%S A200638 1,5,1,7,7,1,3,3,1,8,6,7,9,0,9,2,8,1,6,9,8,6,2,5,5,9,8,1,2,0,6,5,2,1,
%T A200638 7,2,8,5,5,8,1,6,4,1,1,3,4,9,5,3,8,8,9,0,3,4,6,3,7,0,3,8,2,5,0,0,3,3,
%U A200638 7,7,3,3,9,4,0,2,0,0,7,6,5,9,7,8,7,3,0,5,2,7,8,8,2,4,6,5,5,7,0,9,8,5,8
%N A200638 Decimal expansion of least x>0 satisfying 6*x^2+5=tan(x).
%C A200638 See A200614 for a guide to related sequences. The Mathematica program includes a graph.
%H A200638 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A200638 x=1.517713318679092816986255981206521728558164...
%t A200638 a = 6; c = -5;
%t A200638 f[x_] := a*x^2 - c; g[x_] := Tan[x]
%t A200638 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200638 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
%t A200638 RealDigits[r]  (* A200638 *)
%Y A200638 Cf. A200338.
%K A200638 nonn,cons
%O A200638 1,2
%A A200638 _Clark Kimberling_, Nov 20 2011