A200651 Number of equal bit-runs in Stolarsky Representation of n.
1, 1, 1, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 4, 3, 3, 2, 3, 3, 2, 1, 2, 5, 3, 4, 3, 4, 3, 3, 2, 3, 3, 2, 1, 4, 3, 5, 4, 3, 5, 4, 3, 2, 5, 3, 4, 3, 4, 3, 3, 2, 3, 3, 2, 1, 2, 5, 3, 6, 5, 5, 4, 3, 4, 5, 5, 4, 3, 4, 3, 5, 4, 3, 5, 4, 3, 2, 5, 3, 4, 3, 4, 3, 3, 2, 3, 3
Offset: 1
Examples
The Stolarsky representation of 19 is 11101. This has 3 equal bit-runs: '111', '0' and '1'. So a(19) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Casey Mongoven, Description of Stolarsky Representations.
Programs
-
Mathematica
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]]; a[n_] := If[n == 1, 1, Length[Split[stol[n]]]]; Array[a, 100] (* Amiram Eldar, Jul 07 2023 *)
-
PARI
stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));} a(n) = {my(s = stol(n), c = 1); for(k = 1, #s-1, if(s[k+1] != s[k], c++)); c; } \\ Amiram Eldar, Jul 07 2023
Extensions
More terms from Amiram Eldar, Jul 07 2023
Comments