A200661 Number of 0..1 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 2.
2, 3, 5, 8, 12, 17, 25, 36, 51, 72, 102, 144, 202, 284, 399, 560, 785, 1101, 1544, 2164, 3033, 4251, 5958, 8349, 11700, 16396, 22976, 32196, 45116, 63221, 88590, 124139, 173953, 243756, 341568, 478629, 670689, 939816, 1316935, 1845380, 2585874
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....1....0....0....0....1....1....1....0....0....1....0 ..0....0....0....0....0....1....1....1....1....1....1....1....0....1....1....0 ..0....1....0....0....1....0....1....1....1....0....0....0....0....1....1....1 ..1....1....1....0....1....1....0....0....0....0....1....1....0....1....1....1 ..1....0....1....0....1....1....0....1....1....1....0....1....0....1....1....0 ..0....1....1....1....1....1....1....0....1....1....1....0....0....1....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A200668.
Formula
Empirical: a(n)=a(n-1)+a(n-2)-a(n-5)-a(n-6)+a(n-7).
Empirical g.f.: x*(1 + x^2)*(2 + x - 2*x^2 - x^3 + x^4) / ((1 - x)*(1 - x^2 - x^3 - x^4 + x^6)). - Colin Barker, May 21 2018
Comments