cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A200661 Number of 0..1 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 2.

Original entry on oeis.org

2, 3, 5, 8, 12, 17, 25, 36, 51, 72, 102, 144, 202, 284, 399, 560, 785, 1101, 1544, 2164, 3033, 4251, 5958, 8349, 11700, 16396, 22976, 32196, 45116, 63221, 88590, 124139, 173953, 243756, 341568, 478629, 670689, 939816, 1316935, 1845380, 2585874
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2011

Keywords

Comments

Column 1 of A200668.

Examples

			Some solutions for n=6:
..0....0....0....0....0....1....0....0....0....1....1....1....0....0....1....0
..0....0....0....0....0....1....1....1....1....1....1....1....0....1....1....0
..0....1....0....0....1....0....1....1....1....0....0....0....0....1....1....1
..1....1....1....0....1....1....0....0....0....0....1....1....0....1....1....1
..1....0....1....0....1....1....0....1....1....1....0....1....0....1....1....0
..0....1....1....1....1....1....1....0....1....1....1....0....0....1....1....0
		

Crossrefs

Cf. A200668.

Formula

Empirical: a(n)=a(n-1)+a(n-2)-a(n-5)-a(n-6)+a(n-7).
Empirical g.f.: x*(1 + x^2)*(2 + x - 2*x^2 - x^3 + x^4) / ((1 - x)*(1 - x^2 - x^3 - x^4 + x^6)). - Colin Barker, May 21 2018

A200662 Number of 0..2 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 3.

Original entry on oeis.org

3, 6, 12, 24, 46, 89, 176, 350, 697, 1391, 2780, 5555, 11098, 22170, 44288, 88472, 176729, 353032, 705224, 1408771, 2814203, 5621746, 11230193, 22433834, 44814616, 89523251, 178834811, 357246713, 713648606, 1425609609, 2847847987, 5688961529
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Column 2 of A200668

Examples

			Some solutions for n=6
..0....2....0....0....1....0....0....2....0....1....1....0....1....1....1....1
..1....2....0....0....1....0....1....2....1....2....1....0....2....1....2....2
..2....2....2....1....2....0....2....2....1....1....2....2....0....2....0....0
..0....2....2....2....1....2....0....0....2....1....2....2....2....1....1....2
..1....2....2....0....1....2....1....1....2....2....2....1....1....1....0....1
..2....0....1....2....2....2....1....0....2....2....0....2....0....1....2....2
		

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -6*a(n-4) +7*a(n-5) -9*a(n-6) +8*a(n-7) -6*a(n-8) +5*a(n-9) -4*a(n-10) +5*a(n-11) -5*a(n-12) +2*a(n-14) -3*a(n-15) +2*a(n-16) +a(n-17) -2*a(n-18) +5*a(n-19) -3*a(n-20) +a(n-21) -a(n-22) -a(n-24) +a(n-25) -a(n-26) +a(n-27)

A200663 Number of 0..3 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 4.

Original entry on oeis.org

4, 10, 26, 69, 175, 432, 1076, 2671, 6627, 16421, 40695, 100886, 250093, 619947, 1536810, 3809790, 9444489, 23412999, 58041252, 143885484, 356695266, 884255363, 2192088651, 5434237397, 13471597487, 33396394603, 82790419927, 205239329905
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Column 3 of A200668

Examples

			Some solutions for n=6
..0....2....0....1....1....2....3....1....1....1....2....2....0....1....0....2
..3....3....2....1....1....2....3....3....3....1....2....3....2....3....3....2
..3....3....2....3....2....0....3....0....0....2....3....3....2....1....3....0
..2....2....1....2....1....2....2....1....2....3....3....3....1....1....3....3
..3....0....1....3....3....3....3....1....2....3....0....2....1....1....2....1
..1....2....3....2....2....3....3....3....2....1....3....1....2....3....1....1
		

Formula

Empirical: a(n) = 3*a(n-1) -a(n-3) -6*a(n-4) -2*a(n-5) +4*a(n-6) +10*a(n-7) +8*a(n-8) -4*a(n-9) -37*a(n-10) +12*a(n-11) +5*a(n-12) +27*a(n-13) +6*a(n-14) -10*a(n-15) -25*a(n-16) -a(n-17) +23*a(n-19) -7*a(n-20) -14*a(n-21) -9*a(n-22) +94*a(n-23) -90*a(n-24) -38*a(n-25) +88*a(n-26) -72*a(n-27) +64*a(n-28) +75*a(n-29) -94*a(n-30) -141*a(n-31) +114*a(n-32) +23*a(n-33) +71*a(n-34) -49*a(n-35) -58*a(n-36) -100*a(n-37) +48*a(n-38) +140*a(n-39) -56*a(n-40) +32*a(n-41) -43*a(n-42) +18*a(n-43) +6*a(n-44) -14*a(n-45) -10*a(n-46) -12*a(n-47) +27*a(n-48) -2*a(n-49) -4*a(n-50) +6*a(n-51) -6*a(n-52) -2*a(n-53) +3*a(n-54) +3*a(n-55) -2*a(n-56) -a(n-57) +5*a(n-58) -5*a(n-59) +2*a(n-63) -a(n-64)

A200664 Number of 0..4 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 5.

Original entry on oeis.org

5, 15, 45, 135, 406, 1217, 3650, 10959, 32941, 99044, 297812, 895494, 2692703, 8096855, 24346869, 73209872, 220138513, 661945308, 1990435887, 5985139586, 17997009753, 54116091662, 162724331983, 489303778636, 1471311543936
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Column 4 of A200668

Examples

			Some solutions for n=6
..1....0....2....1....2....3....0....1....2....3....1....0....0....0....1....0
..4....1....3....3....3....4....0....2....3....4....4....4....0....1....2....1
..1....3....3....4....1....4....0....3....1....3....4....4....0....4....4....2
..3....4....4....3....2....2....0....2....2....3....4....4....3....2....2....3
..4....4....0....3....1....0....1....4....2....1....2....4....4....4....4....2
..4....1....2....2....4....4....2....4....0....2....2....3....3....4....3....2
		

A200666 Number of 0..6 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 7.

Original entry on oeis.org

7, 28, 112, 448, 1813, 7322, 29536, 119066, 479993, 1935168, 7802161, 31456852, 126827111, 511338342, 2061602939, 8311924900, 33511832745, 135112262286, 544742594039, 2196280995578, 8854916583356, 35701054472646, 143938712300001
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2011

Keywords

Examples

			Some solutions for n=6:
..1....3....1....4....0....4....4....2....5....4....1....2....1....4....0....2
..6....4....3....6....4....6....4....5....5....6....1....3....4....6....0....5
..1....4....4....3....5....3....4....1....5....4....5....6....6....4....3....0
..6....6....2....6....5....6....6....1....4....0....4....5....4....6....6....4
..6....6....2....1....6....5....4....4....6....5....6....5....0....5....2....6
..6....3....5....5....2....1....5....6....6....5....6....5....5....6....5....6
		

Crossrefs

Column 6 of A200668.

A200667 Number of 0..7 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 8.

Original entry on oeis.org

8, 36, 164, 750, 3414, 15504, 70412, 319532, 1449895, 6578528, 29850070, 135443522, 614568094, 2788573700, 12653014693, 57412388798, 260505742646, 1182031264628, 5363405068469, 24336170423291, 110424101519685, 501043586283665
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Column 7 of A200668

Examples

			Some solutions for n=6
..4....4....2....5....3....0....1....1....4....4....0....0....0....6....0....0
..6....4....6....7....7....0....7....3....5....5....4....5....3....7....4....0
..6....3....0....4....6....1....7....5....2....5....5....5....6....5....4....3
..4....4....6....5....3....1....7....4....4....6....7....6....1....4....1....7
..2....5....6....0....7....4....6....7....3....0....6....2....6....0....4....4
..5....5....5....1....4....6....7....5....5....7....6....7....6....7....2....6
		

A200669 Number of 0..n arrays x(0..4) of 5 elements with each no smaller than the sum of its three previous neighbors modulo (n+1).

Original entry on oeis.org

12, 46, 175, 406, 938, 1813, 3414, 5682, 9412, 14443, 22009, 31668, 45374, 62393, 85516, 113373, 149874, 193249, 248539, 312886, 393096, 485530, 598634, 727155, 881972, 1056600, 1264221, 1495936, 1768186, 2070552, 2422168, 2809532, 3256044
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Row 5 of A200668

Examples

			Some solutions for n=6
..5....0....5....1....1....4....4....0....4....0....0....4....0....0....1....4
..5....3....5....1....2....6....5....1....5....5....4....6....3....1....6....5
..4....5....5....6....5....4....6....6....5....6....4....4....6....6....0....5
..6....6....1....2....5....5....3....1....1....4....2....0....6....2....1....0
..5....1....4....5....5....4....2....4....4....2....3....4....1....3....6....4
		

Formula

Empirical: a(n) = -2*a(n-1) -2*a(n-2) +5*a(n-4) +8*a(n-5) +7*a(n-6) +2*a(n-7) -5*a(n-8) -8*a(n-9) -9*a(n-10) -10*a(n-11) -9*a(n-12) -6*a(n-13) +4*a(n-14) +16*a(n-15) +20*a(n-16) +16*a(n-17) +4*a(n-18) -6*a(n-19) -9*a(n-20) -10*a(n-21) -9*a(n-22) -8*a(n-23) -5*a(n-24) +2*a(n-25) +7*a(n-26) +8*a(n-27) +5*a(n-28) -2*a(n-30) -2*a(n-31) -a(n-32)

A200670 Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its three previous neighbors modulo (n+1).

Original entry on oeis.org

17, 89, 432, 1217, 3283, 7322, 15504, 28743, 52389, 87890, 145070, 225134, 345639, 507376, 738960, 1038003, 1448418, 1966975, 2656248, 3504620, 4603324, 5934897, 7622356, 9631810, 12132029, 15075684, 18682566, 22873460, 27937667, 33775988
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Row 6 of A200668

Examples

			Some solutions for n=6
..5....3....1....1....3....0....0....1....2....1....0....4....0....0....2....1
..5....6....6....1....4....3....4....1....5....3....1....4....3....2....3....2
..6....3....4....6....2....6....5....6....1....4....6....5....6....3....5....3
..5....6....6....4....3....2....5....6....4....4....0....6....6....6....4....6
..6....5....4....4....3....6....0....6....5....6....0....5....6....5....5....5
..3....3....1....3....2....5....4....5....6....6....6....2....6....4....1....6
		

Formula

Empirical: a(n) = -4*a(n-1) -11*a(n-2) -23*a(n-3) -40*a(n-4) -59*a(n-5) -74*a(n-6) -75*a(n-7) -50*a(n-8) +11*a(n-9) +112*a(n-10) +244*a(n-11) +385*a(n-12) +497*a(n-13) +536*a(n-14) +458*a(n-15) +238*a(n-16) -121*a(n-17) -575*a(n-18) -1044*a(n-19) -1421*a(n-20) -1595*a(n-21) -1481*a(n-22) -1044*a(n-23) -322*a(n-24) +578*a(n-25) +1489*a(n-26) +2226*a(n-27) +2618*a(n-28) +2560*a(n-29) +2034*a(n-30) +1125*a(n-31) -1125*a(n-33) -2034*a(n-34) -2560*a(n-35) -2618*a(n-36) -2226*a(n-37) -1489*a(n-38) -578*a(n-39) +322*a(n-40) +1044*a(n-41) +1481*a(n-42) +1595*a(n-43) +1421*a(n-44) +1044*a(n-45) +575*a(n-46) +121*a(n-47) -238*a(n-48) -458*a(n-49) -536*a(n-50) -497*a(n-51) -385*a(n-52) -244*a(n-53) -112*a(n-54) -11*a(n-55) +50*a(n-56) +75*a(n-57) +74*a(n-58) +59*a(n-59) +40*a(n-60) +23*a(n-61) +11*a(n-62) +4*a(n-63) +a(n-64)

A200671 Number of 0..n arrays x(0..6) of 7 elements with each no smaller than the sum of its three previous neighbors modulo (n+1).

Original entry on oeis.org

25, 176, 1076, 3650, 11516, 29536, 70412, 145431, 291683, 534853, 956522, 1600651, 2633406, 4126715, 6386960, 9505210, 14002011, 20025031, 28396896, 39265235, 53923628, 72565437, 97086596, 127619975, 166939721, 215170884, 276186538
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Row 7 of A200668

Examples

			Some solutions for n=6
..1....0....0....3....1....0....0....5....0....1....1....2....5....2....5....1
..6....1....1....4....1....2....1....6....2....6....6....5....5....5....5....6
..4....3....1....1....5....6....2....5....6....4....5....3....5....2....5....0
..5....6....2....6....1....6....4....4....6....5....5....3....5....5....5....5
..5....6....6....4....4....3....2....5....0....4....4....4....4....6....1....4
..6....2....6....5....4....6....1....6....6....6....5....4....5....6....5....6
..2....5....1....4....4....4....1....3....6....6....3....5....2....6....6....2
		

A200665 Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its three previous neighbors modulo 6.

Original entry on oeis.org

6, 21, 75, 267, 938, 3283, 11516, 40399, 141745, 497298, 1744684, 6121152, 21475315, 75342932, 264330011, 927363850, 3253519870, 11414498822, 40046099291, 140495874086, 492909198404, 1729299730308, 6066994825927, 21285162746386
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Column 5 of A200668

Examples

			Some solutions for n=6
..0....2....3....0....3....4....1....1....2....0....2....4....0....1....0....1
..3....4....3....0....5....5....5....4....2....3....2....5....1....3....1....2
..3....1....0....0....5....3....2....5....5....5....5....4....5....5....5....3
..1....2....5....0....3....4....5....4....5....4....3....2....1....4....3....3
..2....5....3....0....4....3....4....4....4....5....4....5....2....3....4....3
..5....3....3....4....4....4....5....3....4....4....0....5....2....1....4....3
		
Showing 1-10 of 10 results.