cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200670 Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its three previous neighbors modulo (n+1).

Original entry on oeis.org

17, 89, 432, 1217, 3283, 7322, 15504, 28743, 52389, 87890, 145070, 225134, 345639, 507376, 738960, 1038003, 1448418, 1966975, 2656248, 3504620, 4603324, 5934897, 7622356, 9631810, 12132029, 15075684, 18682566, 22873460, 27937667, 33775988
Offset: 1

Views

Author

R. H. Hardin Nov 20 2011

Keywords

Comments

Row 6 of A200668

Examples

			Some solutions for n=6
..5....3....1....1....3....0....0....1....2....1....0....4....0....0....2....1
..5....6....6....1....4....3....4....1....5....3....1....4....3....2....3....2
..6....3....4....6....2....6....5....6....1....4....6....5....6....3....5....3
..5....6....6....4....3....2....5....6....4....4....0....6....6....6....4....6
..6....5....4....4....3....6....0....6....5....6....0....5....6....5....5....5
..3....3....1....3....2....5....4....5....6....6....6....2....6....4....1....6
		

Formula

Empirical: a(n) = -4*a(n-1) -11*a(n-2) -23*a(n-3) -40*a(n-4) -59*a(n-5) -74*a(n-6) -75*a(n-7) -50*a(n-8) +11*a(n-9) +112*a(n-10) +244*a(n-11) +385*a(n-12) +497*a(n-13) +536*a(n-14) +458*a(n-15) +238*a(n-16) -121*a(n-17) -575*a(n-18) -1044*a(n-19) -1421*a(n-20) -1595*a(n-21) -1481*a(n-22) -1044*a(n-23) -322*a(n-24) +578*a(n-25) +1489*a(n-26) +2226*a(n-27) +2618*a(n-28) +2560*a(n-29) +2034*a(n-30) +1125*a(n-31) -1125*a(n-33) -2034*a(n-34) -2560*a(n-35) -2618*a(n-36) -2226*a(n-37) -1489*a(n-38) -578*a(n-39) +322*a(n-40) +1044*a(n-41) +1481*a(n-42) +1595*a(n-43) +1421*a(n-44) +1044*a(n-45) +575*a(n-46) +121*a(n-47) -238*a(n-48) -458*a(n-49) -536*a(n-50) -497*a(n-51) -385*a(n-52) -244*a(n-53) -112*a(n-54) -11*a(n-55) +50*a(n-56) +75*a(n-57) +74*a(n-58) +59*a(n-59) +40*a(n-60) +23*a(n-61) +11*a(n-62) +4*a(n-63) +a(n-64)