A200681 Decimal expansion of the lesser of two values of x satisfying 3*x^2 = tan(x) and 0 < x < Pi/2.
3, 4, 7, 4, 2, 5, 7, 6, 4, 4, 7, 7, 4, 3, 8, 7, 1, 1, 2, 8, 9, 0, 5, 6, 4, 1, 2, 9, 5, 5, 3, 2, 5, 8, 7, 6, 7, 2, 3, 1, 5, 3, 1, 7, 0, 2, 7, 7, 1, 9, 3, 9, 3, 7, 2, 0, 4, 8, 9, 6, 8, 3, 6, 8, 0, 0, 8, 0, 9, 5, 6, 5, 4, 2, 5, 1, 2, 3, 4, 8, 8, 8, 2, 7, 0, 5, 2, 9, 2, 2, 7, 5, 0, 5, 7, 8, 8, 1, 3
Offset: 0
Examples
lesser: 0.34742576447743871128905641295532587... greater: 1.40306042080937123884892134944944201...
Crossrefs
Cf. A200614.
Programs
-
Mathematica
a = 3; c = 0; f[x_] := a*x^2 - c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] RealDigits[r] (* A200681 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200682 *)
Comments