This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200682 #10 Jan 30 2025 13:35:25 %S A200682 1,4,0,3,0,6,0,4,2,0,8,0,9,3,7,1,2,3,8,8,4,8,9,2,1,3,4,9,4,4,9,4,4,2, %T A200682 0,1,5,7,1,2,9,3,1,3,8,4,2,4,5,1,1,1,4,6,8,9,5,9,4,8,8,5,9,1,8,5,2,9, %U A200682 0,1,7,3,9,6,5,1,5,1,1,0,2,5,2,8,1,8,7,6,3,1,0,6,4,1,3,8,5,0,6 %N A200682 Decimal expansion of the greater of two values of x satisfying 3*x^2 = tan(x) and 0 < x < Pi/2. %C A200682 See A200614 for a guide to related sequences. The Mathematica program includes a graph. %H A200682 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200682 lesser: 0.34742576447743871128905641295532587... %e A200682 greater: 1.40306042080937123884892134944944201... %t A200682 a = 3; c = 0; %t A200682 f[x_] := a*x^2 - c; g[x_] := Tan[x] %t A200682 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] %t A200682 r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] %t A200682 RealDigits[r] (* A200681 *) %t A200682 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A200682 RealDigits[r] (* A200682 *) %Y A200682 Cf. A200614. %K A200682 nonn,cons %O A200682 1,2 %A A200682 _Clark Kimberling_, Nov 20 2011