cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200695 Decimal expansion of least x>0 satisfying 1-2*x^2=tan(x).

This page as a plain text file.
%I A200695 #8 Feb 07 2025 16:44:07
%S A200695 4,8,5,7,9,7,3,4,8,9,4,7,5,4,4,1,7,8,7,5,5,5,9,5,4,4,1,1,3,7,5,9,3,6,
%T A200695 1,9,5,2,6,0,3,3,0,5,2,1,4,6,3,0,8,9,9,7,8,6,8,0,6,8,7,8,4,8,3,5,1,7,
%U A200695 5,7,2,7,9,7,2,0,1,1,1,7,9,6,9,6,3,6,3,2,6,9,9,5,4,3,7,5,8,6,5
%N A200695 Decimal expansion of least x>0 satisfying 1-2*x^2=tan(x).
%C A200695 See A200614 for a guide to related sequences. The Mathematica program includes a graph.
%H A200695 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A200695 0.4857973489475441787555954411375936195260330521...
%t A200695 a = -2; c = 1;
%t A200695 f[x_] := a*x^2 + c; g[x_] := Tan[x]
%t A200695 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200695 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
%t A200695 RealDigits[r]   (* A200695 *)
%Y A200695 Cf. A200338.
%K A200695 nonn,cons
%O A200695 0,1
%A A200695 _Clark Kimberling_, Nov 21 2011