cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200697 Decimal expansion of least x>0 satisfying 1-3*x^2=tan(x).

This page as a plain text file.
%I A200697 #8 Feb 07 2025 16:44:07
%S A200697 4,2,6,4,7,3,8,7,2,8,0,9,1,4,5,1,3,2,9,9,5,2,9,9,1,3,5,6,3,2,8,0,1,9,
%T A200697 1,2,1,2,8,7,1,0,3,7,7,5,9,4,7,2,9,3,3,3,9,4,8,1,0,1,8,9,3,3,6,8,1,6,
%U A200697 0,9,1,2,5,9,4,2,7,5,8,3,3,5,2,1,5,8,5,5,7,5,4,1,2,6,6,0,6,3,5
%N A200697 Decimal expansion of least x>0 satisfying 1-3*x^2=tan(x).
%C A200697 See A200614 for a guide to related sequences. The Mathematica program includes a graph.
%H A200697 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A200697 0.426473872809145132995299135632801912128710...
%t A200697 a = -3; c = 1;
%t A200697 f[x_] := a*x^2 + c; g[x_] := Tan[x]
%t A200697 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200697 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
%t A200697 RealDigits[r]   (* A200697 *)
%Y A200697 Cf. A200338.
%K A200697 nonn,cons
%O A200697 0,1
%A A200697 _Clark Kimberling_, Nov 21 2011