cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200702 Decimal expansion of least x>0 satisfying 1-7*x^2=tan(x).

This page as a plain text file.
%I A200702 #8 Feb 07 2025 16:44:07
%S A200702 3,1,1,2,7,8,8,8,4,1,7,5,9,3,6,8,6,7,8,9,6,7,9,9,2,6,5,6,8,8,2,1,3,2,
%T A200702 1,8,1,7,1,5,2,3,7,1,0,2,3,8,9,5,0,3,3,3,3,4,3,8,6,3,6,3,2,4,4,6,7,1,
%U A200702 2,7,6,8,5,1,4,6,8,5,2,3,3,6,6,8,7,9,3,7,5,3,3,8,5,3,8,7,5,4,5
%N A200702 Decimal expansion of least x>0 satisfying 1-7*x^2=tan(x).
%C A200702 See A200614 for a guide to related sequences. The Mathematica program includes a graph.
%H A200702 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A200702 0.311278884175936867896799265688213218171523710...
%t A200702 a = -7; c = 1;
%t A200702 f[x_] := a*x^2 + c; g[x_] := Tan[x]
%t A200702 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200702 r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
%t A200702 RealDigits[r]   (* A200702 *)
%Y A200702 Cf. A200338.
%K A200702 nonn,cons
%O A200702 0,1
%A A200702 _Clark Kimberling_, Nov 21 2011