cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200703 Decimal expansion of least x>0 satisfying 1-8*x^2=tan(x).

This page as a plain text file.
%I A200703 #8 Feb 07 2025 16:44:07
%S A200703 2,9,4,9,8,8,6,0,6,8,2,8,9,2,6,5,3,5,7,0,8,8,8,9,6,5,2,0,4,6,7,6,1,3,
%T A200703 8,7,7,8,8,7,1,8,2,6,0,1,4,9,7,5,2,1,3,4,8,9,2,7,6,2,8,2,8,1,8,3,4,0,
%U A200703 4,4,1,3,7,6,4,0,7,3,0,1,8,5,9,9,2,9,1,3,8,8,9,1,1,5,5,1,3,6,7
%N A200703 Decimal expansion of least x>0 satisfying 1-8*x^2=tan(x).
%C A200703 See A200614 for a guide to related sequences. The Mathematica program includes a graph.
%H A200703 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A200703 0.294988606828926535708889652046761387788718260...
%t A200703 a = -8; c = 1;
%t A200703 f[x_] := a*x^2 + c; g[x_] := Tan[x]
%t A200703 Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
%t A200703 r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110]
%t A200703 RealDigits[r]   (* A200703 *)
%Y A200703 Cf. A200338.
%K A200703 nonn,cons
%O A200703 0,1
%A A200703 _Clark Kimberling_, Nov 21 2011