This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200724 #25 Sep 08 2022 08:46:00 %S A200724 1,35,1224,42805,1496951,52350480,1830769849,64024594235, %T A200724 2239030028376,78302026398925,2738331893933999,95763314261291040, %U A200724 3348977667251252401,117118455039532542995,4095796948716387752424,143235774750034038791845,5009156319302474969962151 %N A200724 Expansion of 1/(1-35*x+x^2). %C A200724 A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 1221*a(n)^2 = 4. (See also comment in A200441.) %C A200724 a(n) equals the number of 01-avoiding words of length n on alphabet {0,1,...,34}. - _Milan Janjic_, Jan 26 2015 %H A200724 Bruno Berselli, <a href="/A200724/b200724.txt">Table of n, a(n) for n = 0..500</a> %H A200724 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>. %H A200724 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (35,-1). %F A200724 G.f.: 1/(1-35*x+x^2). %F A200724 a(n) = 35*a(n-1)-a(n-2) with a(0)=1, a(1)=35. %F A200724 a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t) where t=(35+sqrt(1221))/2. %F A200724 a(n) = sum((-1)^k*binomial(n-k, k)*35^(n-2k), k=0..floor(n/2)). %F A200724 a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*34^k. - _Philippe Deléham_, Feb 10 2012 %F A200724 Product {n >= 0} (1 + 1/a(n)) = 1/33*(33 + sqrt(1221)). - _Peter Bala_, Dec 23 2012 %F A200724 Product {n >= 1} (1 - 1/a(n)) = 1/70*(33 + sqrt(1221)). - _Peter Bala_, Dec 23 2012 %t A200724 LinearRecurrence[{35, -1}, {1, 35}, 17] %o A200724 (PARI) Vec(1/(1-35*x+x^2)+O(x^17)) %o A200724 (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-1221); S:=[(((35+r)/2)^n-1/((35+r)/2)^n)/r: n in [1..17]]; [Integers()!S[j]: j in [1..#S]]; %o A200724 (Maxima) makelist(sum((-1)^k*binomial(n-k,k)*35^(n-2*k),k,0,floor(n/2)),n,0,16); %Y A200724 Cf. A029547, A144128. %K A200724 nonn,easy %O A200724 0,2 %A A200724 _Bruno Berselli_, Nov 21 2011