This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200727 #15 Feb 06 2017 12:09:40 %S A200727 0,1,1,3,4,8,9,16,22,33,42,61,79,110,143,192,246,325,411,535,676,865, %T A200727 1081,1371,1704,2136,2642,3283,4035,4979,6082,7453,9067,11043,13365, %U A200727 16197,19516,23531,28239,33894,40513,48425,57667,68661,81497,96679,114370 %N A200727 Number of partitions of n such that the number of parts is not divisible by the greatest part. %C A200727 Also number of partitions of n such that the greatest part is not divisible by the number of parts. Equivalence can be shown using Ferrers-Young diagrams. %H A200727 Alois P. Heinz, <a href="/A200727/b200727.txt">Table of n, a(n) for n = 1..500</a> %e A200727 The number of parts is not divisible by the greatest part: %e A200727 a(5) = 4: [1,2,2], [2,3], [1,4], [5]; %e A200727 a(6) = 8: [1,1,1,1,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [2,4], [1,5], [6]. %e A200727 The greatest part is not divisible by the number of parts: %e A200727 a(5) = 4: [1,1,1,1,1], [1,1,1,2], [1,2,2], [2,3]; %e A200727 a(6) = 8: [1,1,1,1,1,1], [1,1,1,1,2], [1,1,2,2], [2,2,2], [1,1,1,3], [3,3], [1,1,4], [1,5]. %p A200727 b:= proc(n, j, t) option remember; %p A200727 add(b(n-i, i, t+1), i=j..iquo(n, 2))+ %p A200727 `if`(irem(t, n)>0, 1, 0) %p A200727 end: %p A200727 a:= n-> b(n, 1, 1): %p A200727 seq(a(n), n=1..50); %t A200727 b[n_, j_, t_] := b[n, j, t] = Sum[b[n-i, i, t+1], {i, j, Quotient[n, 2]}] + If[Mod[t, n]>0, 1, 0]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Feb 05 2017, translated from Maple *) %Y A200727 Cf. A199884, A199885. %K A200727 nonn %O A200727 1,4 %A A200727 _Alois P. Heinz_, Nov 21 2011